Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem Biophys Res Commun ; 735: 150796, 2024 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-39427377

RESUMO

Controlling the microenvironment surrounding the pluripotent stem cells (PSCs) is a pivotal strategy for regulating cellular differentiation. Surface nanotopography is one of the key factors influencing the lineage-specific differentiation of PSCs. However, much of the underlying mechanism remains unknown. In this study, we focused on the effects of gradient nanotopography on the differentiation of embryoid bodies (EBs). EBs were cultured on three differently sized nanopillar surfaces (Large, 280-360; Medium, 200-280; Small, 120-200 nm) for spontaneous cardiomyocyte differentiation without chemical stimuli. The large nanotopography significantly promoted cardiogenesis, with increased expression of cardiac markers such as α-MHC, cTnT, and cTnI, and redistributed vinculin expression to the contact area. In addition, the small and medium nanotopographies also influenced EB differentiation, affecting both cardiogenesis and hematopoiesis to varying degrees. The phosphorylation of focal adhesion kinase (FAK) decreased in the EBs on the large nanotopography compared to that in the EBs cultured on the flat surface. The gradient nanotopography with 280-360 nm nanopillars is beneficial for the cardiogenesis of EBs in a FAK-dependent manner. This study provides valuable insights into controlling stem cell differentiation through nanotopographical cues, thereby advancing our understanding of the microenvironmental regulation in stem cell-based cardiac tissue engineering.


Assuntos
Diferenciação Celular , Corpos Embrioides , Miócitos Cardíacos , Células-Tronco Pluripotentes , Transdução de Sinais , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Animais , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Organogênese
2.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012471

RESUMO

Alveolar organoids (AOs), derived from human pluripotent stem cells (hPSCs) exhibit lung-specific functions. Therefore, the application of AOs in pulmonary disease modeling is a promising tool for understanding disease pathogenesis. However, the lack of immune cells in organoids limits the use of human AOs as models of inflammatory diseases. In this study, we generated AOs containing a functional macrophage derived from hPSCs based on human fetal lung development using biomimetic strategies. We optimized culture conditions to maintain the iMACs (induced hPSC-derived macrophages) AOs for up to 14 days. In lipopolysaccharide (LPS)-induced inflammatory conditions, IL-1ß, MCP-1 and TNF-α levels were significantly increased in iMAC-AOs, which were not detected in AOs. In addition, chemotactic factor IL-8, which is produced by mononuclear phagocytic cells, was induced by LPS treatment in iMACs-AOs. iMACs-AOs can be used to understand pulmonary infectious diseases and is a useful tool in identifying the mechanism of action of therapeutic drugs in humans. Our study highlights the importance of immune cell presentation in AOs for modeling inflammatory pulmonary diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Lipopolissacarídeos/farmacologia , Pulmão , Macrófagos , Organoides
3.
J Cell Physiol ; 230(8): 1807-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25521758

RESUMO

Dimethyl sulfoxide (DMSO) is widely used to induce multilineage differentiation of embryonic and adult progenitor cells. To date, little is known about the mechanisms underlying DMSO-induced mesodermal specification. In this study, we investigated the signaling pathways and lineage-determining genes involved in DMSO-induced mesodermal specification in P19 cells. Wnt/ß-catenin and TGF-ß superfamily signaling pathways such as BMP, TGF-ß and GDF1 signaling were significantly activated during DMSO-induced mesodermal specification. In contrast, Nodal/Cripto signaling pathway molecules, required for endoderm specification, were severely downregulated. DMSO significantly upregulated the expression of cardiac mesoderm markers but inhibited the expression of endodermal and hematopoietic lineage markers. Among the DMSO-activated cell lineage markers, the expression of Mixl1 and Flk1 was dramatically upregulated at both the transcript and protein levels, and the populations of Mixl1+, Flk1+ and Mixl1+/Flk1+ cells also increased significantly. DMSO modulated cell cycle molecules and induced cell apoptosis, resulting in significant cell death during EB formation of P19 cells. An inhibitor of Flk1, SU5416 significantly blocked expressions of TGF-ß superfamily members, mesodermal cell lineage markers and cell cycle molecules but it did not affect Wnt molecules. These results demonstrate that Mixl1 and Flk1 play roles as key downstream or interacting effectors of Wnt/TGF-ß signaling pathway during DMSO-induced mesodermal specification in P19 cells.


Assuntos
Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Dimetil Sulfóxido/farmacologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Mesoderma/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
4.
Biochem Biophys Res Commun ; 449(4): 405-11, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24858689

RESUMO

Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.


Assuntos
Células Endoteliais/citologia , Miócitos de Músculo Liso/citologia , Neovascularização Fisiológica , Células-Tronco/citologia , Adulto , Animais , Sobrevivência Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/terapia , Camundongos , Modelos Animais , Miócitos de Músculo Liso/metabolismo , Células-Tronco/metabolismo
5.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685725

RESUMO

Mature cardiomyocytes (CMs) obtained from human pluripotent stem cells (hPSCs) have been required for more accurate in vitro modeling of adult-onset cardiac disease and drug discovery. Here, we found that FGF4 and ascorbic acid (AA) induce differentiation of BG01 human embryonic stem cell-cardiogenic mesoderm cells (hESC-CMCs) into mature and ventricular CMs. Co-treatment of BG01 hESC-CMCs with FGF4+AA synergistically induced differentiation into mature and ventricular CMs. FGF4+AA-treated BG01 hESC-CMs robustly released acute myocardial infarction (AMI) biomarkers (cTnI, CK-MB, and myoglobin) into culture medium in response to hypoxic injury. Hypoxia-responsive genes and potential cardiac biomarkers proved in the diagnosis and prognosis of coronary artery diseases were induced in FGF4+AA-treated BG01 hESC-CMs in response to hypoxia based on transcriptome analyses. This study demonstrates that it is feasible to model hypoxic stress in vitro using hESC-CMs matured by soluble factors.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular , Fator 4 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Embrionárias Humanas/patologia , Modelos Biológicos , Miócitos Cardíacos/patologia , Estresse Fisiológico , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultura/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/patologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/genética
6.
Sci Rep ; 9(1): 7272, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086227

RESUMO

Understanding signals in the microenvironment that regulate endothelial cell behavior are important in tissue engineering. Although many studies have examined the cellular effects of nanotopography, no study has investigated the functional regulation of human endothelial cells grown on nano-sized gradient hole substrate. We examined the cellular response of human umbilical vein endothelial cells (HUVECs) by using a gradient nanohole substrate (GHS) with three different types of nanohole patterns (HP): which diameters were described in HP1, 120-200 nm; HP2, 200-280 nm; HP3, 280-360 nm. In results, HP2 GHS increased the attachment and proliferation of HUVECs. Also, gene expression of focal adhesion markers in HUVECs was significantly increased on HP2 GHS. In vitro tube formation assay showed the enhancement of tubular network formation of HUVECs after priming on GHS compared to Flat. Furthermore, leukocyte adhesion was also reduced in the HUVECs in a hole-diameter dependent manner. To summarize, optimal proliferations with reduced leukocyte adhesion of HUVECs were achieved by gradient nanohole substrate with 200-280 nm-sized holes.


Assuntos
Adesão Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Leucócitos/metabolismo , Membrana Basal/metabolismo , Western Blotting , Citocinas/metabolismo , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Nanoporos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Vis Exp ; (137)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010660

RESUMO

Nanotopography can be found in various extracellular matrices (ECMs) around the body and is known to have important regulatory actions upon cellular reactions. However, it is difficult to determine the relation between the size of a nanostructure and the responses of cells owing to the lack of proper screening tools. Here, we show the development of reproducible and cost-effective gradient nanopattern plates for the manipulation of cellular responses. Using anodic aluminum oxide (AAO) as a master mold, gradient nanopattern plates with nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] were fabricated by a thermal imprinting technique. These gradient nanopattern plates were designed to mimic the various sizes of nanotopography in the ECM and were used to screen the responses of human endothelial colony-forming cells (hECFCs). In this protocol, we describe the step-by-step procedure of fabricating gradient nanopattern plates for cell engineering, techniques of cultivating hECFCs from human peripheral blood, and culturing hECFCs on nanopattern plates.


Assuntos
Óxido de Alumínio/química , Técnicas de Cultura de Células/métodos , Células Endoteliais/metabolismo , Nanoestruturas/química , Nanotecnologia/métodos , Humanos
8.
Acta Biomater ; 65: 272-282, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29037896

RESUMO

Nanotopography plays a pivotal role in the regulation of cellular responses. Nonetheless, little is known about how the gradient size of nanostructural stimuli alters the responses of endothelial progenitor cells without chemical factors. Herein, the fabrication of gradient nanopattern plates intended to mimic microenvironment nanotopography is described. The gradient nanopattern plates consist of nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] that were used to screen the responses of human endothelial colony-forming cells (hECFCs). Nanopillars with a smaller nanopillar diameter caused the cell area and perimeter of hECFCs to decrease and their filopodial outgrowth to increase. The structure of vinculin (a focal adhesion marker in hECFCs) was also modulated by nanostructural stimuli of the gradient nanopattern plates. Moreover, Rho-associated protein kinase (ROCK) gene expression was significantly higher in hECFCs cultured on GP 120/200 than in those on flat plates (no nanopillars), and ROCK suppression impaired the nanostructural-stimuli-induced vinculin assembly. These results suggest that the gradient nanopattern plates generate size-specific nanostructural stimuli suitable for manipulation of the response of hECFCs, in a process dependent on ROCK signaling. This is the first evidence of size-specific nanostructure-sensing behavior of hECFCs. SIGNIFICANCE: Nano feature surfaces are of growing interest as materials for a controlled response of various cells. In this study, we successfully fabricated gradient nanopattern plates to manipulate the response of blood-derived hECFCs without any chemical stimulation. Interestingly, we find that the sensitive nanopillar size for manipulation of hECFCs is range between 120 nm and 200 nm, which decreased the area and increased the filopodial outgrowth of hECFCs. Furthermore, we only modulate the nanopillar size to increase ROCK expression can be an attractive method for modulating the cytoskeletal integrity and focal adhesion of hECFCs.


Assuntos
Células Endoteliais/citologia , Adesões Focais , Nanoestruturas , Células-Tronco/citologia , Actinas/metabolismo , Adulto , Animais , Western Blotting , Células Cultivadas , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Células-Tronco/metabolismo , Vinculina/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
9.
ACS Appl Mater Interfaces ; 9(20): 16803-16812, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28497946

RESUMO

Nanoscaled surface patterning is an emerging potential method of directing the fate of stem cells. We adopted nanoscaled pillar gradient patterned cell culture plates with three diameter gradients [280-360 (GP 280/360), 200-280 (GP 200/280), and 120-200 nm (GP 120/200)] and investigated their cell fate-modifying effect on multipotent fetal liver kinase 1-positive mesodermal precursor cells (Flk1+ MPCs) derived from embryonic stem cells. We observed increased cell proliferation and colony formation of the Flk1+ MPCs on the nanopattern plates. Interestingly, the 200-280 nm-sized (GP 200/280) pillar surface dramatically increased cardiomyocyte differentiation and expression of the early cardiac marker gene Mesp1. The gradient nanopattern surface-induced cardiomyocytes had cardiac sarcomeres with mature cardiac gene expression. We observed Vinculin and p-Cofilin-mediated cytoskeleton reorganization during this process. In summary, the gradient nanopattern surface with 200-280 nm-sized pillars enhanced cardiomyocyte differentiation in Flk1+ MPCs.


Assuntos
Diferenciação Celular , Fatores de Despolimerização de Actina , Citoesqueleto , Células-Tronco Embrionárias , Miócitos Cardíacos , Nanoestruturas
10.
Sci Rep ; 6: 28832, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357248

RESUMO

The human body contains different endothelial cell types and differences in their angiogenic potential are poorly understood. We compared the functional angiogenic ability of human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using a three-dimensional (3D) microfluidic cell culture system. HAECs and HUVECs exhibited similar cellular characteristics in a 2D culture system; however, in the 3D microfluidic angiogenesis system, HAECs exhibited stronger angiogenic potential than HUVECs. Interestingly, the expression level of fibroblast growth factor (FGF)2 and FGF5 under vascular endothelial growth factor (VEGF)-A stimulation was significantly higher in HAECs than in HUVECs. Moreover, small interfering RNA-mediated knockdown of FGF2 and FGF5 more significantly attenuated vascular sprouting induced from HAECs than HUVECs. Our results suggest that HAECs have greater angiogenic potential through FGF2 and FGF5 upregulation and could be a compatible endothelial cell type to achieve robust angiogenesis.


Assuntos
Microfluídica/métodos , Neovascularização Fisiológica/fisiologia , Aorta/citologia , Técnicas de Cultura de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Análise Serial de Proteínas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
11.
Int J Cardiol ; 197: 33-43, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26113473

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFCs), a subtype of endothelial progenitor cells, have been studied as a promising cellular source for therapeutic angiogenesis. Although ECFCs are very similar to mature endothelial cells, details regarding the role of ECFCs during angiogenesis are not known. We compared the cellular and angiogenic properties of ECFCs and mature endothelial cells (HUVECs). METHODS: HUVECs were used as control. Quantitative RT-PCR, western blotting, immunofluorescence staining, flow cytometric analyses and angiogenic cytokine array were performed. 3D-microfluidic angiogenesis assay system was adopted for in vitro angiogenic potential. In vivo angiogenic potential was assessed by Matrigel plug assay. RESULTS: ECFCs had higher expression of activated endothelial tip cell markers (Dll4, CXCR4, CD34, and VCAM1) and arterial genes (DLL4 and CX40), but lower expression of venous and lymphatic genes (COUP-TFII and PROX1). In 3D-microfluidic angiogenesis assay system, ECFCs induced robust sprouting vascular structures. Co-cultivation of both ECFCs and HUVECs gave rise to lumen-formed hybrid vascular structures, with the resulting ECFCs predominantly localized to the tip portion. This finding suggests that the ECFC has a role as a sprouting endothelial tip cell. Interestingly, VEGF-A phosphorylated VEGFR2 and its downstream signaling molecules more strongly in ECFCs than in HUVECs. Even small amount of VEGF-A successfully induced the sprouting angiogenesis of ECFCs. Finally, co-administration of ECFCs and human dermal fibroblasts successfully induced lumen-formed maturated neovessels in vivo. CONCLUSION: ECFCs derived from adult peripheral blood had enhanced sprouting angiogenic potential in vitro and in vivo through up-regulation of the VEGFR2 signaling pathway.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Animais , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Feminino , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Camundongos , Camundongos SCID , Microcirculação/fisiologia , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
12.
PLoS One ; 8(1): e53577, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308255

RESUMO

Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f) mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.


Assuntos
Cardiomiopatias/patologia , Proteínas de Ciclo Celular/genética , Insuficiência Cardíaca/patologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Ciclo Celular/deficiência , Respiração Celular , Cruzamentos Genéticos , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Consumo de Oxigênio , Tamoxifeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA