Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Biotechnol Bioeng ; 116(9): 2412-2417, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31145478

RESUMO

2'-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has been spotlighted for its neutraceutical and pharmaceutical potentials. Microbial production of 2-FL is promising since it is efficient as compared to other production methods. In 2-FL microbial production via the salvage pathway for biosynthesis of guanosine 5'-diphosphate (GDP)-l-fucose from fucose, the conversion yield from fucose is important because of the high price of fucose. In this study, deletion of the genes (araA and rhaA) coding for arabinose isomerase (AraA) and rhamnose isomerase (RhaA) was attempted in engineered Escherichia coli for improving 2-FL production by using fucose, lactose, and glycerol. The engineered E. coli constructed previously is able to express fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori and deficient in ß-galactosidase (LacZ), fucose isomerase (FucI), and fuculose kinase (FucK). The additional double-deletion of the araA and rhaA genes in the engineered E. coli enhanced the product yield of 2-FL to 0.52 mole 2-FL/mole fucose, and hence the concentration of 2-FL reached to 47.0 g/L, which are 44% and two-fold higher than those (23.1 g/L and 0.36 mole 2-FL/mole fucose) of the control strain in fed-batch fermentation. Elimination of sugar isomerases exhibiting promiscuous activities with fucose might be critical in the microbial production of 2-FL through the salvage pathway of GDP-l-fucose.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fucose/metabolismo , Deleção de Genes , Engenharia Metabólica , Trissacarídeos/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fucose/genética , Trissacarídeos/genética
2.
Biotechnol Bioeng ; 116(4): 904-911, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597526

RESUMO

L-Fucose (6-deoxy-L-galactose) is a major constituent of glycans and glycolipids in mammals. Fucosylation of glycans can confer unique functional properties and may be an economical way to manufacture L-fucose. Research can extract L-fucose directly from brown algae, or by enzymatic hydrolysis of L-fucose-rich microbial exopolysaccharides. However, these L-fucose production methods are not economical or scalable for various applications. We engineered an Escherichia coli strain to produce L-fucose. Specifically, we modified the strain genome to eliminate endogenous L-fucose and lactose metabolism, produce 2'-fucosyllactose (2'-FL), and to liberate L-fucose from 2'-FL. This E. coli strain produced 16.7 g/L of L-fucose with productivity of 0.1 g·L-1 ·h-1 in a fed-batch fermentation. This study presents an efficient one-pot biosynthesis strategy to produce a monomeric form of L-fucose by microbial fermentation, making large-scale industrial production of L-fucose feasible.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli/metabolismo , Fucose/metabolismo , Reatores Biológicos , Vias Biossintéticas , Escherichia coli/genética , Fermentação , Fucose/genética , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos
3.
Planta Med ; 85(9-10): 766-773, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31167297

RESUMO

Osteoporosis is a clinical condition characterized by low bone strength that leads to an increased risk of fracture. Strategies for the treatment of osteoporosis involve inhibition of bone resorption by osteoclasts and an increase of bone formation by osteoblasts. Here, we identified the extract derived from the stem part of Edgeworthia papyrifera that enhanced differentiation of MC3T3-E1 cells to osteoblast-like cells and inhibited osteoclast differentiation of RAW 264.7 cells in vitro. In support of our observation, rutin and daphnoretin, which were previously reported to inhibit osteoclast differentiation, were identified in E. papyrifera extract. In an animal model of osteoporosis, the ovariectomy-induced increases in bone resorption biomarkers such as pyridinoline and tartrate-resistant acid phosphatase were significantly reduced by E. papyrifera extract administration at 25.6 and 48.1%, respectively. Furthermore, the ovariectomy-induced bone loss in animal models of osteoporosis was significantly prevented by the administration of E. papyrifera in our study. Taking these observations into account, we suggest that E. papyrifera is an interesting candidate for further exploration as an anti-osteoporotic agent.


Assuntos
Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Thymelaeaceae/química , Fosfatase Alcalina/metabolismo , Aminoácidos/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Osteoporose/etiologia , Extratos Vegetais/análise , Células RAW 264.7 , Ratos Sprague-Dawley
4.
Biochem Biophys Res Commun ; 503(1): 309-315, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29890139

RESUMO

Skin pigmentation involves multiple processes, including melanin synthesis, transport, and melanosome release. Melanin content determines skin color and protects against UV radiation-induced damage. Autophagy is a cooperative process between autophagosomes and lysosomes that degrades cellular components and organelles. In the present study, B16F1 cells were treated with Rhizoma Arisaematis extract (RA) and assessed for pigmentation and autophagy regulation. RA treatment suppressed the α-MSH-stimulated increase of melanogenesis and down-regulated the expression of tyrosinase and TRP1 proteins in B16F1 cells. In addition, autophagy was activated in RA-treated cells. Inhibition of autophagy reduced the anti-melanogenic activity of RA in α-MSH-treated B16F1 cells. We identified schaftoside as an effector molecule by LC-MS analysis of RA. Consistently, treatment of schaftoside showed anti-melanogenic effect and induced autophagy activation in B16F1 cells. Inhibition of autophagy by 3 MA treatment reduced the anti-melanogenic effect of the schaftoside and recovered expression level of melanogenesis regulators in α-MSH-treated B16F1 cells. Taken together, our results suggest that schaftoside from RA inhibits skin pigmentation through modulation of autophagy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Glicosídeos/farmacologia , Melaninas/metabolismo , Melanoma/tratamento farmacológico , Animais , Arisaema/química , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma/metabolismo , Camundongos , Pessoa de Meia-Idade , alfa-MSH/metabolismo
5.
Metab Eng ; 48: 269-278, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29870790

RESUMO

Fucosyllactoses (FLs), present in human breast milk, have been reported to benefit human health immensely. Especially, 3-fucosyllactose (3-FL) has numerous benefits associated with a healthy gut ecosystem. Metabolic engineering of microorganisms is thought to be currently the only option to provide an economically feasible route for large-scale production of 3-FL. However, engineering principles for α-1,3-fucosyltransferases (1,3-FTs) are not well-known, resulting in the lower productivity of 3-FL than that of 2'-fucosyllactose (2'-FL), although both 2'-FL and 3-FL follow a common pathway to produce GDP-L-fucose. The C-terminus of 1,3-FTs is composed of heptad repeats, responsible for dimerization of the enzymes, and a peripheral membrane anchoring region. It has long been thought that truncation of most heptad repeats, retaining just 1 or 2, helps the soluble expression of 1,3-FTs. However, whether the introduction of truncated version of 1,3-FTs enhances the production of 3-FL in a metabolically engineered strain, is yet to be tested. In this study, the effect of these structural components on the production of 3-FL in Escherichia coli was evaluated through systematic truncation and elongation of the C-terminal regions of three 1,3-FTs from Helicobacter pylori. Although these three 1,3-FTs contained heptad repeats and membrane-anchoring regions of varying lengths, they commonly exhibited an optimal performance when the number of heptad repeats was increased, and membrane-binding region was removed. The production of 3-FL could be increased 10-20-fold through this simple strategy.


Assuntos
Proteínas de Bactérias , Escherichia coli , Fucosiltransferases , Helicobacter pylori/genética , Lactose , Engenharia Metabólica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fucosiltransferases/biossíntese , Fucosiltransferases/genética , Helicobacter pylori/enzimologia , Humanos , Lactose/análogos & derivados , Lactose/biossíntese , Lactose/genética , Engenharia de Proteínas
6.
Appl Microbiol Biotechnol ; 101(6): 2241-2250, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28204883

RESUMO

Saccharomyces cerevisiae is a work horse for production of valuable biofuels and biochemicals including 2,3-butanediol (2,3-BDO), a platform chemical with wide industrial applications for synthetic rubber, biosolvents and food additives. Recently, a cutting-edge technology of metabolic engineering has enabled S. cerevisiae to produce 2,3-BDO with high yield and productivity. These include (i) amplification of the 2,3-BDO biosynthetic pathway, (ii) redirection of carbon flux from ethanol or glycerol toward 2,3-BDO, and (iii) 2,3-BDO production from sugars derived from renewable biomass. These breakthroughs enforced S. cerevisiae to become a promising microbial host for production of 2,3-BDO.


Assuntos
Butileno Glicóis/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Biocombustíveis , Biomassa , Carboxiliases/genética , Carboxiliases/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Piruvato Descarboxilase/deficiência , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/metabolismo
7.
Appl Microbiol Biotechnol ; 101(7): 2821-2830, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28078395

RESUMO

Conversion of crude glycerol derived from biodiesel processes to value-added chemicals has attracted much attention. Herein, Raoultella ornithinolytica B6 was investigated for the high production of 2,3-butanediol (2,3-BD) from glycerol without 1,3-propanediol (1,3-PD) formation, a by-product hindering 2,3-BD purification. By evaluating the effects of temperature, agitation speed, and pH control strategy, the fermentation conditions favoring 2,3-BD production were found to be 25 °C, 400 rpm, and pH control with a lower limit of 5.5, respectively. Notably, significant pH fluctuations which positively affect 2,3-BD production were generated by simply controlling the lower pH limit at 5.5. In fed-batch fermentation under those conditions, R. ornithinolytica B6 produced 2,3-BD up to 79.25 g/L, and further enhancement of 2,3-BD production (89.45 g/L) was achieved by overexpressing homologous 2,3-BD synthesis genes (the budABC). When pretreated crude glycerol was used as a sole carbon source, R. ornithinolytica B6 overexpressing budABC produced 78.10 g/L of 2,3-BD with the yield of 0.42 g/g and the productivity of 0.62 g/L/h. The 2,3-BD titer, yield, and productivity values obtained in this study are the highest 2,3-BD production from glycerol among 1,3-PD synthesis-deficient 2,3-BD producers, demonstrating R. ornithinolytica B6 as a promising 2,3-BD producer from glycerol.


Assuntos
Butileno Glicóis/metabolismo , Enterobacteriaceae/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Biocombustíveis , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
8.
Appl Microbiol Biotechnol ; 101(1): 197-204, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27521023

RESUMO

ß-1,6-glucan is a polysaccharide found in brown macroalgae and fungal cell walls. In this study, a ß-1,6-endoglucanase gene from Saccharophagus degradans 2-40T, gly30B, was cloned and overexpressed in Escherichia coli. Gly30B, which belongs to the glycoside hydrolase family 30 (GH30), was found to possess ß-1,6-endoglucanase activity by hydrolyzing ß-1,6-glycosidic linkages of pustulan (ß-1,6-glucan derived from fungal cell walls) and laminarin (ß-1,3-glucan with ß-1,6-branchings, derived from brown macroalgae) to produce gentiobiose and glucose as the final products. The optimal pH and temperature for Gly30B activity were found to be pH 7.0 and 40 °C, respectively. The kinetic constants of Gly30B, V max, K M, and k cat were determined to be 153.8 U/mg protein, 24.2 g/L, and 135.6 s-1 for pustulan and 32.8 U/mg protein, 100.8 g/L, and 28.9 s-1 for laminarin, respectively. To our knowledge, Gly30B is the first ß-1,6-endoglucanase characterized from bacteria. Gly30B can be used to hydrolyze ß-1,6-glucans of brown algae or fungal cell walls for producing gentiobiose as a high-value sugar and glucose as a fermentable sugar.


Assuntos
Celulase/isolamento & purificação , Celulase/metabolismo , Gammaproteobacteria/enzimologia , Glucanos/metabolismo , Polissacarídeos/metabolismo , Celulase/genética , Clonagem Molecular , Dissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Gammaproteobacteria/genética , Expressão Gênica , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Phaeophyceae , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
9.
Bioprocess Biosyst Eng ; 40(5): 683-691, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28120125

RESUMO

Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors, including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated-batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with twofold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40-50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.


Assuntos
Etanol/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Fermentação , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Xilose/metabolismo
10.
Biotechnol Bioeng ; 113(11): 2443-52, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27217241

RESUMO

2'-Fucosyllactose (2-FL) is one of the key oligosaccharides in human milk. In the present study, the salvage guanosine 5'-diphosphate (GDP)-l-fucose biosynthetic pathway from fucose was employed in engineered Escherichia coli BL21star(DE3) for efficient production of 2-FL. Introduction of the fkp gene coding for fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the fucT2 gene encoding α-1,2-fucosyltransferase from Helicobacter pylori allows the engineered E. coli to produce 2-FL from fucose, lactose and glycerol. To enhance the lactose flux to 2-FL production, the attenuated, and deleted mutants of ß-galactosidase were employed. Moreover, the 2-FL yield and productivity were further improved by deletion of the fucI-fucK gene cluster coding for fucose isomerase (FucI) and fuculose kinase (FucK). Finally, fed-batch fermentation of engineered E. coli BL21star(DE3) deleting lacZ and fucI-fucK, and expressing fkp and fucT2 resulted in 23.1 g/L of extracellular concentration of 2-FL and 0.39 g/L/h productivity. Biotechnol. Bioeng. 2016;113: 2443-2452. © 2016 Wiley Periodicals, Inc.


Assuntos
Escherichia coli/fisiologia , Fucosiltransferases/genética , Guanosina Difosfato Fucose/metabolismo , Engenharia Metabólica/métodos , Trissacarídeos/biossíntese , Fucosiltransferases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Guanosina Difosfato Fucose/genética , Lactose/metabolismo , Transdução de Sinais/fisiologia , Trissacarídeos/genética
11.
Biochem Biophys Res Commun ; 460(2): 428-33, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25796328

RESUMO

Previously, we showed that BIX-01294 treatment strongly activates autophagy. Although, the interplay between autophagy and ciliogenesis has been suggested, the role of autophagy in ciliogenesis is controversial and largely unknown. In this study, we investigated the effects of autophagy induced by BIX-01294 on the formation of primary cilia in human retinal pigmented epithelial (RPE) cells. Treatment of RPE cells with BIX-01294 caused strong elongation of the primary cilium and increased the number of ciliated cells, as well as autophagy activation. The elongated cilia in serum starved cultured cells were gradually decreased by re-feeding the cells with normal growth medium. However, the disassembly of cilia was blocked in the BIX-01294-treated cells. In addition, both genetic and chemical inhibition of autophagy suppressed BIX-01294-mediated ciliogenesis in RPE cells. Taken together, these results suggest that autophagy induced by BIX-01294 positively regulates the elongation of primary cilium.


Assuntos
Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Cílios/efeitos dos fármacos , Quinazolinas/farmacologia , Linhagem Celular Transformada , Cílios/fisiologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos
12.
Metab Eng ; 29: 46-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724339

RESUMO

Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates.


Assuntos
Farmacorresistência Fúngica , Lignina , Engenharia Metabólica , Saccharomyces cerevisiae , Espermidina/biossíntese , Antiporters/genética , Antiporters/metabolismo , Lignina/metabolismo , Lignina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biotechnol Bioeng ; 112(2): 346-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25182473

RESUMO

Escherichia coli is the best-established microbial host strain for production of proteins and chemicals, but has a weakness for not secreting high amounts of active heterologous proteins to the extracellular culture medium, of which origins belong to whether prokaryotes or eukaryotes. In this study, Candida antarctica lipase B (CalB), a popular eukaryotic enzyme which catalyzes a number of biochemical reactions and barely secreted extracellularly, was expressed functionally at a gram scale in culture medium by using a simple amino acid-tag system of E. coli. New fusion tag systems consisting of a pelB signal sequence and various anion amino acid tags facilitated both intracellular expression and extracellular secretion of CalB. Among them, the N-terminal five aspartate tag changed the quaternary structure of the dimeric CalB and allowed production of 1.9 g/L active CalB with 65 U/mL activity in culture medium, which exhibited the same enzymatic properties as the commercial CalB. This PelB-anion amino acid tag-based expression system for CalB can be extended to production of other industrial proteins hardly expressed and exported from E. coli, thereby increasing target protein concentrations and minimizing purification steps.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lipase/química , Lipase/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Lipase/genética , Modelos Moleculares , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/genética
14.
Appl Microbiol Biotechnol ; 99(10): 4201-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25904131

RESUMO

Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and ß-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.


Assuntos
Biotecnologia , Lignina/química , Celulases/química , Fermentação , Hidrólise
15.
J Ind Microbiol Biotechnol ; 42(1): 49-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25475752

RESUMO

The aim of this study was to develop a competitive quantitative-PCR (CQ-PCR) method for rapid analysis of the population dynamics of lactic acid bacteria (LAB) in kimchi. For this, whole chromosome sequences of Leuconostoc mesenteroides, Lactobacillus plantarum, and Lb. brevis were compared and species-specific PCR primers targeting dextransucrase, 16S rRNA, and surface layer protein D (SlpD) genes, respectively, were constructed. The tested strains were quantified both in medium and kimchi by CQ-PCR and the results were compared with the data obtained using a conventional plate-counting method. As a result, the three species were successfully detected and quantified by the indicated primer sets. Our results show that the CQ-PCR method targeting species-specific genes is suitable for rapid estimation of LAB population to be used in the food fermentation industry.


Assuntos
Fermentação , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Leuconostoc/crescimento & desenvolvimento , Reação em Cadeia da Polimerase/métodos , Contagem de Colônia Microbiana , Primers do DNA , DNA Bacteriano/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , RNA Ribossômico 16S/análise
16.
Bioprocess Biosyst Eng ; 38(2): 263-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142154

RESUMO

Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MFα1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MFα1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.


Assuntos
Etanol/metabolismo , Insulisina/metabolismo , Inulina/metabolismo , Kluyveromyces/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/fisiologia , Clonagem Molecular/métodos , Etanol/isolamento & purificação , Melhoramento Genético/métodos , Insulisina/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/metabolismo
17.
Appl Microbiol Biotechnol ; 98(8): 3569-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24048639

RESUMO

Sugar transport is very critical in developing an efficient and rapid conversion process of a mixture of sugars by engineered microorganisms. By using expressed sequence tag data generated for the fructophilic yeast Candida magnoliae JH110, we identified two fructose-specific transporters, CmFSY1 and CmFFZ1, which show high homology with known fructose transporters of other yeasts. The CmFSY1 and CmFFZ1 genes harbor no introns and encode proteins of 574 and 582 amino acids, respectively. Heterologous expression of the two fructose-specific transporter genes in a Saccharomyces cerevisiae, which is unable to utilize hexoses, revealed that both transporters are functionally expressed and specifically transport fructose. These results were further corroborated by kinetic analysis of the fructose transport that showed that CmFsy1p is a high-affinity fructose-proton symporter with low capacity (K(M) = 0.13 ± 0.01 mM, V(max) = 2.1 ± 0.3 mmol h⁻¹ [gdw]⁻¹) and that CmFfz1p is a low-affinity fructose-specific facilitator with high capacity (K(M) = 105 ± 12 mM, V max = 8.6 ± 0.7 mmol h⁻¹ [gdw]⁻¹). These fructose-specific transporters can be used for improving fructose transport in engineered microorganisms for the production of biofuels and chemicals from fructose-containing feedstock.


Assuntos
Candida/enzimologia , Frutose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Candida/genética , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Expressão Gênica , Cinética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
18.
Appl Microbiol Biotechnol ; 98(12): 5757-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24743979

RESUMO

Production of renewable fuels and chemicals from cellulosic biomass is a critical step towards energy sustainability and reduced greenhouse gas emissions. Microbial cells have been engineered for producing chemicals from cellulosic sugars. Among these chemicals, 2,3-butanediol (2,3-BDO) is a compound of interest due to its diverse applications. While microbial production of 2,3-BDO with high yields and productivities has been reported, there are concerns associated with utilization of potential pathogenic bacteria and inefficient utilization of cellulosic sugars. To address these problems, we engineered 2,3-BDO production in Saccharomyces cerevisiae, especially from cellobiose, a prevalent sugar in cellulosic hydrolysates. Specifically, we overexpressed alsS and alsD from Bacillus subtilis to convert pyruvate into 2,3-BDO via α-acetolactate and acetoin in an engineered cellobiose fermenting S. cerevisiae. Under oxygen-limited conditions, the resulting strain was able to produce 2,3-BDO. Still, major carbon flux went to ethanol, resulting in substantial amounts of ethanol produced as a byproduct. To enhance pyruvate flux to 2,3-BDO through elimination of the pyruvate decarboxylation reaction, we employed a deletion mutant of both PDC1 and PDC5 for producing 2,3-BDO. When a cellobiose utilization pathway, consisting of a cellobiose transporter and intracellular ß-glucosidase, and the 2,3-BDO producing pathway were introduced in a pyruvate decarboxylase deletion mutant, the resulting strain produced 2,3-BDO without ethanol production from cellobiose under oxygen-limited conditions. A titer of 5.29 g/l 2,3-BDO with a productivity of 0.22 g/l h and yield of 0.29 g 2,3-BDO/g cellobiose was attained. These results suggest the possibility of producing 2,3-BDO safely and sustainably from cellulosic hydrolysates.


Assuntos
Butileno Glicóis/metabolismo , Celobiose/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Biotransformação , Carbono/metabolismo , Etanol/metabolismo , Fermentação , Deleção de Genes , Expressão Gênica , Análise do Fluxo Metabólico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/enzimologia
19.
Proc Natl Acad Sci U S A ; 108(2): 504-9, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187422

RESUMO

The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily glucose and xylose. However, strains of Saccharomyces cerevisiae presently used in bioethanol production ferment glucose but not xylose. Yeasts engineered to ferment xylose do so slowly, and cannot utilize xylose until glucose is completely consumed. To overcome these bottlenecks, we engineered yeasts to coferment mixtures of xylose and cellobiose. In these yeast strains, hydrolysis of cellobiose takes place inside yeast cells through the action of an intracellular ß-glucosidase following import by a high-affinity cellodextrin transporter. Intracellular hydrolysis of cellobiose minimizes glucose repression of xylose fermentation allowing coconsumption of cellobiose and xylose. The resulting yeast strains, cofermented cellobiose and xylose simultaneously and exhibited improved ethanol yield when compared to fermentation with either cellobiose or xylose as sole carbon sources. We also observed improved yields and productivities from cofermentation experiments performed with simulated cellulosic hydrolyzates, suggesting this is a promising cofermentation strategy for cellulosic biofuel production. The successful integration of cellobiose and xylose fermentation pathways in yeast is a critical step towards enabling economic biofuel production.


Assuntos
Biotecnologia/métodos , Celobiose/metabolismo , Engenharia Genética , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Escherichia coli/genética , Etanol/química , Fermentação , Glucose/metabolismo , Modelos Biológicos , Espectrofotometria Ultravioleta/métodos , Xilose/química
20.
Bioprocess Biosyst Eng ; 37(3): 393-400, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23828244

RESUMO

The cDNAs of six manganese-dependent peroxidases (MnPs) were isolated from white-rot fungus Polyporus brumalis. The MnP proteins shared similar properties with each other in terms of size (approximately 360-365 amino acids) and primary structure, showing 62-96 % amino acid sequence identity. RT-PCR analysis indicated that these six genes were predominantly expressed in shallow stationary culture (SSC) in a liquid medium. Gene expression was induced by treatment with dibutyl phthalate (DBP) and wood chips. Expression of pbmnp4 was strongly induced by both treatments, whereas that of pbmnp5 was induced only by DBP, while pbmnp6 was induced by wood chips only. Then, we overexpressed pbmnp4 in P. brumalis under the control of the GPD promoter. Overexpression of pbmnp4 effectively increased MnP activity; the transformant that had the highest MnP activity also demonstrated the most effective decolorization of Remazol Brilliant Blue R dye. Identification of MnP cDNAs can contribute to the efficient production of lignin-degradation enzymes and may lead to utilization of basidiomycetous fungi for degradation of lignin and numerous recalcitrant xenobiotics.


Assuntos
Peroxidases/metabolismo , Polyporus/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , DNA Complementar , Dibutilftalato/metabolismo , Dados de Sequência Molecular , Peroxidases/química , Peroxidases/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA