Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 28(6): 647-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24862639

RESUMO

In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Desenho Assistido por Computador , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Maleatos/química , Maleatos/farmacologia , Fusão de Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polieletrólitos , Polímeros/química , Polímeros/farmacologia , Internalização do Vírus/efeitos dos fármacos
2.
J Comput Aided Mol Des ; 26(12): 1369-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23239170

RESUMO

Multipoint interactions between synthetic and natural polymers provide a promising platform for many topical applications, including therapeutic blockage of virus-specific targets. Docking may become a useful tool for modelling of such interactions. However, the rigid docking cannot be correctly applied to synthetic polymers with flexible chains. The application of flexible docking to these polymers as whole macromolecule ligands is also limited by too many possible conformations. We propose to solve this problem via stepwise flexible docking. Step 1 is docking of separate polymer components: (1) backbone units (BU), multi-repeated along the chain, and (2) side groups (SG) consisting of functionally active elements (SG(F)) and bridges (SG(B)) linking SG(F) with BU. At this step, probable binding sites locations and binding energies for the components are scored. Step 2 is docking of component-integrating models: [BU](m), SG = SG(F)-SG(B), BU-SG, BU-BU(SG)-BU, BU(SG)-[BU](m)-BU(SG), and [BU(var)(SG(var))](m). Every modelling level yields new information, including how the linkage of various components influences on the ligand-target contacts positioning, orientation, and binding energy in step-by-step approximation to polymeric ligand motifs. Step 3 extrapolates the docking results to real-scale macromolecules. This approach has been demonstrated by studying the interactions between hetero-SG modified anionic polymers and the N-heptad repeat region tri-helix core of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, the key mediator of HIV-1 fusion during virus entry. The docking results are compared to real polymeric compounds, acting as HIV-1 entry inhibitors in vitro. This study clarifies the optimal macromolecular design for the viral fusion inhibition and drug resistance prevention.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Modelos Moleculares , Polímeros/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Conformação Molecular , Dados de Sequência Molecular , Polímeros/síntese química , Estrutura Secundária de Proteína , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA