Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurobiol Dis ; 179: 106050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809847

RESUMO

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Doença de Alzheimer/genética , Neuroproteção , Proteínas de Ligação a DNA/metabolismo , Imunoterapia
2.
PLoS Biol ; 11(11): e1001717, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24302884

RESUMO

Histone deacetylase (HDAC) 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD), a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.


Assuntos
Histona Desacetilases/genética , Doença de Huntington/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Histona Desacetilases/metabolismo , Proteína Huntingtina , Doença de Huntington/fisiopatologia , Doença de Huntington/terapia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Neurônios/fisiologia , Fenótipo , Teste de Desempenho do Rota-Rod , Transmissão Sináptica , Transcrição Gênica
3.
Front Cell Neurosci ; 17: 1289966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161998

RESUMO

The tropomyosin receptor kinase B (TrkB) is encoded by the NTRK2 gene. It belongs to the family of transmembrane tyrosine kinases, which have key roles in the development and maintenance of the nervous system. Brain-derived neurotrophic factor (BDNF) and the neurotrophins NT3 and NT4/5 have high affinity for TrkB. Dysregulation of TrkB is associated to a large spectrum of diseases including neurodegeneration, psychiatric diseases and some cancers. The function of TrkB and its role in neural development have mainly been decrypted using transgenic mouse models, pharmacological modulators and human neuronal cell lines overexpressing NTRK2. In this study, we identified high expression and robust activity of TrkB in ReNcell VM, an immortalized human neural progenitor stem cell line and generated NTRK2-deficient (NTRK2-/-) ReNcell VM using the CRISPR/Cas9 gene editing technology. Global transcriptomic analysis revealed major changes in expression of specific genes responsible for neurogenesis, neuronal development and glial differentiation. In particular, key neurogenic transcription factors were massively down-regulated in NTRK2-/- cells, while early glial progenitor markers were enriched in NTRK2-/- cells compared to NTRK2+/+. This indicates a previously undescribed inhibitory role of TrkB on glial differentiation in addition to its well-described pro-neurogenesis role. Altogether, we have generated for the first time a human neural cell line with a loss-of-function mutation of NTRK2, which represents a reproducible and readily available cell culture system to study the role of TrkB during human neural differentiation, analyze the role of TrkB isoforms as well as validate TrkB antibodies and pharmacological agents targeting the TrkB pathway.

4.
Redox Biol ; 60: 102609, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708644

RESUMO

Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-ß) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer. Inhibition of the ROS-generating enzyme NADPH oxidase 4 (NOX4) has been proposed to mitigate fibroblast to myofibroblast differentiation and to offer a therapeutic option for the treatment of fibrotic diseases. In this study, we addressed the role of NOX4 in physiological wound healing and in TGF-ß-induced myofibroblast differentiation. We explored the phenotypic changes induced by TGF-ß in primary skin fibroblasts isolated from Nox4-deficient mice by immunofluorescence, Western blotting and RNA sequencing. Mice deficient for Cyba, the gene coding for p22phox, a key subunit of NOX4 were used for confirmatory experiments as well as human primary skin fibroblasts. In vivo, the wound healing was similar in wild-type and Nox4-deficient mice. In vitro, despite a strong upregulation following TGF-ß treatment, Nox4 did not influence skin myofibroblast differentiation although a putative NOX4 inhibitor GKT137831 and a flavoprotein inhibitor diphenylene iodonium mitigated this mechanism. Transcriptomic analysis revealed upregulation of the mitochondrial protein Ucp2 and the stress-response protein Hddc3 in Nox4-deficient fibroblasts, which had however no impact on fibroblast bioenergetics. Altogether, we provide extensive evidence that NOX4 is dispensable for wound healing and skin fibroblast to myofibroblast differentiation, and suggest that another H2O2-generating flavoprotein drives this mechanism.


Assuntos
Peróxido de Hidrogênio , Miofibroblastos , Animais , Humanos , Camundongos , Diferenciação Celular , Fibroblastos/metabolismo , Fibrose , Peróxido de Hidrogênio/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Cicatrização
5.
MAbs ; 15(1): 2232087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408314

RESUMO

Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in conjunction with the use of relevant preclinical models to screen and select humanized candidates with PK suitable for clinical development. Murine mAb targeting TDP-43, ACI-5891, was humanized on a framework (VH1-3/VK2-30) selected based on the highest sequence homology. Since the initial humanized mAb (ACI-5891.1) presented a fast clearance in non-human primates (NHPs), reiteration of humanization on a less basic human framework (VH1-69-2/VK2-28) while retaining high sequence homology was performed. The resulting humanized variant, ACI-5891.9, presented a six-fold reduction in clearance in NHPs resulting in a significant increase in half-life. The observed reduced clearance of ACI-5891.9 was attributed not only to the overall reduction in isoelectric point (pI) by 2 units, but importantly to a more even surface potential. These data confirm the importance and contribution of surface charges to mAb disposition in vivo. Consistent low clearance of ACI-5891.9 in Tg32 mice, a human FcRn transgenic mouse model, further confirmed its utility for early assessment and prediction of human PK. These data demonstrate that mAb surface charge is an important parameter for consideration during the selection and screening of humanized candidates in addition to maintaining the other key physiochemical and target binding characteristics.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Camundongos , Humanos , Animais , Camundongos Transgênicos , Taxa de Depuração Metabólica , Ponto Isoelétrico , Antígenos de Histocompatibilidade Classe I
6.
Brain Commun ; 5(6): fcad306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025276

RESUMO

In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.

7.
Neurobiol Dis ; 45(1): 83-98, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21820514

RESUMO

The availability of many high-quality genome-wide expression datasets has provided an exciting and unique opportunity to better understand the molecular etiology of Huntington's disease. Combining this knowledge with other aspects of huntingtin biology and disease modification screens is yielding important new insights into disease-mitigating therapeutic strategies. Having followed this line of inquiry for some time, we note that there have been a number of surprises regarding the subsequently confirmed relationships between gene expression and disease etiology. Moreover, the complexity and sheer number of proposed mechanisms by which huntingtin can perturb gene expression continues to expand. Nonetheless, ongoing efforts to enthusiastically and critically evaluate the relationships between HD pathobiology and gene expression promise to deliver accurate predictions as to which therapeutic strategies will be most effective. An exciting new arm of this research also demonstrates the power of pharmacogenomics to detect (and rule out) important neuroprotective gene expression effects.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica , Doença de Huntington/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Doença de Huntington/metabolismo
8.
Neurobiol Dis ; 42(3): 459-67, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21334439

RESUMO

R6/2 transgenic mice with expanded CAG repeats (>300) have a surprisingly prolonged disease progression and longer lifespan than prototypical parent R6/2 mice (carrying 150 CAGs); however, the mechanism of this phenotype amelioration is unknown. We compared gene expression profiles in the striatum of R6/2 transgenic mice carrying ~300 CAG repeats (R6/2(Q300) transgenic mice) to those carrying ~150 CAG repeats (R6/2(Q150) transgenic mice) and littermate wildtype controls in order to identify genes that may play determinant roles in the time course of phenotypic expression in these mice. Of the top genes showing concordant expression changes in the striatum of both R6/2 lines, 85% were decreased in expression, while discordant expression changes were observed mostly for genes upregulated in R6/2(Q300) transgenic mice. Upregulated genes in the R6/2(Q300) mice were associated with the ubiquitin ligase complex, cell adhesion, protein folding, and establishment of protein localization. We qPCR-validated increases in expression of genes related to the latter category, including Lrsam1, Erp29, Nasp, Tap1, Rab9b, and Pfdn5 in R6/2(Q300) mice, changes that were not observed in R6/2 mice with shorter CAG repeats, even in late stages (i.e., 12 weeks of age). We further tested Lrsam1 and Erp29, the two genes showing the greatest upregulation in R6/2(Q300) transgenic mice, for potential neuroprotective effects in primary striatal cultures overexpressing a mutated human huntingtin (htt) fragment. Overexpression of Lrsam1 prevented the loss of NeuN-positive cell bodies in htt171-82Q cultures, concomitant with a reduction of nuclear htt aggregates. Erp29 showed no significant effects in this model. This is consistent with the distinct pattern of htt inclusion localization observed in R6/2(Q300) transgenic mice, in which smaller cytoplasmic inclusions represent the major form of insoluble htt in the cell, as opposed to large nuclear inclusions observed in R6/2(Q150) transgenic mice. We suggest that the prolonged onset and disease course observed in R6/2 mice with greatly expanded CAG repeats might result from differential upregulation of genes related to protein localization and clearance. Such genes may represent novel therapeutic avenues to decrease htt aggregate toxicity and cell death in HD patients, with Lrsam1 being a promising, novel candidate disease modifier.


Assuntos
Corpo Estriado/metabolismo , Progressão da Doença , Doença de Huntington/genética , Neurônios/metabolismo , Repetições de Trinucleotídeos/genética , Animais , Morte Celular/genética , Células Cultivadas , Corpo Estriado/citologia , Perfilação da Expressão Gênica , Doença de Huntington/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Antioxidants (Basel) ; 10(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34829703

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a noninflammatory progressive lung disease. Oxidative damage is a hallmark of IPF, but the sources and consequences of oxidant generation in the lungs are unclear. In this study, we addressed the link between the H2O2-generating enzyme NADPH oxidase 4 (NOX4) and di-tyrosine (DT), an oxidative post-translational modification in IPF lungs. We performed immunohistochemical staining for DT and NOX4 in pulmonary tissue from patients with IPF and controls using validated antibodies. In the healthy lung, DT showed little or no staining and NOX4 was mostly present in normal vascular endothelium. On the other hand, both markers were detected in several cell types in the IPF patients, including vascular smooth muscle cells and epithelium (bronchial cells and epithelial cells type II). The link between NOX4 and DT was addressed in human fibroblasts deficient for NOX4 activity (mutation in the CYBA gene). Induction of NOX4 by Transforming growth factor beta 1 (TGFß1) in fibroblasts led to moderate DT staining after the addition of a heme-containing peroxidase in control cells but not in the fibroblasts deficient for NOX4 activity. Our data indicate that DT is a histological marker of IPF and that NOX4 can generate a sufficient amount of H2O2 for DT formation in vitro.

10.
J Pharmacol Exp Ther ; 335(1): 13-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20624994

RESUMO

Although previous studies of Huntington's disease (HD) have addressed many potential mechanisms of striatal neuron dysfunction and death, it is also known, based on clinical findings, that cortical function is dramatically disrupted in HD. With respect to disease etiology, however, the specific molecular and neuronal circuit bases for the cortical effects of mutant huntingtin (htt) have remained largely unknown. In the present work, we studied the relationship between the molecular effects of mutant htt fragments in cortical cells and the corresponding behavior of cortical neuron microcircuits by using a novel cellular model of HD. We observed that a transcript-selective diminution in activity-dependent brain-derived neurotrophic factor (BDNF) expression preceded the onset of a synaptic connectivity deficit in ex vivo cortical networks, which manifested as decreased spontaneous collective burst-firing behavior measured by multielectrode array substrates. Decreased BDNF expression was determined to be a significant contributor to network-level dysfunction, as shown by the ability of exogenous BDNF to ameliorate cortical microcircuit burst firing. The molecular determinants of the dysregulation of activity-dependent BDNF expression by mutant htt seem to be distinct from previously elucidated mechanisms, because they do not involve known neuron-restrictive silencer factor/RE1-silencing transcription factor-regulated promoter sequences but instead result from dysregulation of BDNF exon IV and VI transcription. These data elucidate a novel HD-related deficit in BDNF gene regulation as a plausible mechanism of cortical neuron hypoconnectivity and cortical function deficits in HD. Moreover, the novel model paradigm established here is well suited to further mechanistic and drug screening research applications.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Córtex Cerebral/metabolismo , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/farmacologia , Sinapses/genética , Sinapses/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Vetores Genéticos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Imuno-Histoquímica , Lentivirus/genética , Microeletrodos , Modelos Estatísticos , Mutação/fisiologia , Rede Nervosa/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , RNA/biossíntese , RNA/genética , Ratos , Ratos Wistar , Receptor trkB/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/efeitos dos fármacos
11.
Redox Biol ; 26: 101272, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31330481

RESUMO

BACKGROUND: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O2•-) and/or hydrogen peroxide (H2O2). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action. EXPERIMENTAL APPROACH: We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O2•- or H2O2 using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity. KEY RESULTS: Cells expressing active NOX isoforms formed O2•-, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular H2O2. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors. CONCLUSION: Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.


Assuntos
Inibidores Enzimáticos/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Catálise , Linhagem Celular , Cromatografia Líquida , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Peróxido de Hidrogênio/metabolismo , Isoenzimas , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
12.
Nat Neurosci ; 22(12): 2098-2110, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740814

RESUMO

Microglia are tissue-resident macrophages of the CNS that orchestrate local immune responses and contribute to several neurological and psychiatric diseases. Little is known about human microglia and how they orchestrate their highly plastic, context-specific adaptive responses during pathology. Here we combined two high-dimensional technologies, single-cell RNA-sequencing and time-of-flight mass cytometry, to identify microglia states in the human brain during homeostasis and disease. This approach enabled us to identify and characterize a previously unappreciated spectrum of transcriptional states in human microglia. These transcriptional states are determined by their spatial distribution, and they further change with aging and brain tumor pathology. This description of multiple microglia phenotypes in the human CNS may open promising new avenues for subset-specific therapeutic interventions.


Assuntos
Encéfalo/metabolismo , Glioblastoma/metabolismo , Microglia/metabolismo , Transcrição Gênica , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Adulto Jovem
13.
Neurobiol Dis ; 31(1): 145-58, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18571100

RESUMO

In a comprehensive proteomics study aiming at the identification of proteins associated with amyloid-beta (Abeta)-mediated toxicity in cultured cortical neurons, we have identified Thimet oligopeptidase (THOP1). Functional modulation of THOP1 levels in primary cortical neurons demonstrated that its overexpression was neuroprotective against Abeta toxicity, while RNAi knockdown made neurons more vulnerable to amyloid peptide. In the TgCRND8 transgenic mouse model of amyloid plaque deposition, an age-dependent increase of THOP1 expression was found in brain tissue, where it co-localized with Abeta plaques. In accordance with these findings, THOP1 expression was significantly increased in human AD brain tissue as compared to non-demented controls. These results provide compelling evidence for a neuroprotective role of THOP1 against toxic effects of Abeta in the early stages of AD pathology, and suggest that the observed increase in THOP1 expression might be part of a compensatory defense mechanism of the brain against an increased Abeta load.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/toxicidade , Córtex Cerebral/enzimologia , Metaloendopeptidases/biossíntese , Neurônios/enzimologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/patologia , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Pessoa de Meia-Idade , Neurônios/patologia , Placa Amiloide/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
14.
Assay Drug Dev Technol ; 6(2): 181-93, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18471073

RESUMO

Heterologous functional expression of alpha7 nicotinic acetylcholine receptors (nAChRs) is difficult to achieve in mammalian cell lines, and the reasons have been associated with a lack of expression of the putative chaperone factor RIC-3. Here, we describe the generation and functional and pharmacological characterization of a Chinese hamster ovary (CHO)-K1 cell line co-expressing the human alpha7 nAChR and RIC-3. Stable recombinant cells expressing alpha7 nAChR on the plasma membrane were selected by binding of fluorochrome-conjugated alpha-bungarotoxin and fluorescence-activated cell sorting. The presence of functional alpha7 channels was demonstrated by whole cell patch clamp recordings. Nicotine and acetylcholine induced rapid desensitizing currents with 50% effective concentration values of 14 and 37 microM, respectively, with agonist-evoked currents detected in approximately 75% of the cell population. Surprisingly, when tested in a FLIPR (Molecular Devices, Sunnyvale, CA) Ca(2+) assay, activation of alpha7 nAChRs was measured only when nicotinic agonists were applied either in the presence of the positive allosteric modulator (PAM) PNU-120596 or after pretreatment of cells with the tyrosine kinase inhibitor genistein. No Ca(2+) influx was measured upon addition of agonists alone or together with allosteric potentiators such as 5-hydroxyindole that predominantly increase the apparent peak amplitude without robustly affecting the current desensitization rate, as exemplified by PNU-120596. These results show that functional alpha7 nAChRs can stably be expressed in the non-neuronal CHO-K1 cell line. This recombinant cell system is useful for characterization of alpha7 nAChRs and to study the mechanism of action of chemical modulators, in particular the detection of PAMs capable of slowing receptor desensitization kinetics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Nicotínicos/fisiologia , Animais , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Genisteína/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Isoxazóis/farmacologia , Cinética , Microscopia de Fluorescência , Agonistas Nicotínicos/farmacologia , Compostos de Fenilureia/farmacologia , RNA/biossíntese , RNA/genética , Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção , Receptor Nicotínico de Acetilcolina alfa7
15.
Biosci Rep ; 28(6): 299-306, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18691158

RESUMO

Recent reports demonstrate that the RIC-3 (resistant to inhibitors of cholinesterase-3) protein is important for the maturation of nAChRs (nicotinic acetylcholine receptors). In the present study RIC-3e, a novel variant of RIC-3, is described. This variant contains a deletion of exons 4 and 5 of RIC-3, resulting in a protein product lacking a conserved coiled-coil domain. Like RIC-3, the new variant is predominantly, but not exclusively, expressed in the brain. The analysis of expression of variant RIC-3 mRNA and of alpha7-nAChR mRNA in a set of human tissues shows a similar profile. The RIC-3e protein is functionally active and enables surface expression of mature alpha7-nAChRs in cell lines not otherwise permissive for the expression of this receptor.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/biossíntese , Receptores Nicotínicos/biossíntese , Sequência de Aminoácidos , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Éxons/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Especificidade de Órgãos/fisiologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína/genética , RNA Mensageiro , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7
16.
Free Radic Biol Med ; 112: 387-396, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28811143

RESUMO

Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Síndrome de Creutzfeldt-Jakob/enzimologia , Esclerose Múltipla/enzimologia , NADPH Oxidase 2/genética , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/enzimologia , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Animais , Antioxidantes/uso terapêutico , Biomarcadores/sangue , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/enzimologia , Sistema Nervoso Central/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Europa (Continente) , Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Cooperação Internacional , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/patologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/sangue , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/patologia , Superóxidos/metabolismo
18.
Brain Res ; 1117(1): 54-60, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16996037

RESUMO

The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analog of the adrenocorticotropin fragment (4-10) which after intranasal application has profound effects on learning and exerts marked neuroprotective activities. Here, we found that a single application of Semax (50 microg/kg body weight) results in a maximal 1.4-fold increase of BDNF protein levels accompanying with 1.6-fold increase of trkB tyrosine phosporylation levels, and a 3-fold and a 2-fold increase of exon III BDNF and trkB mRNA levels, respectively, in the rat hippocampus. Semax-treated animals showed a distinct increase in the number of conditioned avoidance reactions. We suggest that Semax affects cognitive brain functions by modulating the expression and the activation of the hippocampal BDNF/trkB system.


Assuntos
Hormônio Adrenocorticotrópico/análogos & derivados , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor trkB/efeitos dos fármacos , Administração Intranasal , Hormônio Adrenocorticotrópico/química , Hormônio Adrenocorticotrópico/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Relação Dose-Resposta a Droga , Éxons/efeitos dos fármacos , Éxons/genética , Hipocampo/metabolismo , Nootrópicos/farmacologia , Fragmentos de Peptídeos/química , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptor trkB/genética , Receptor trkB/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
19.
Free Radic Biol Med ; 97: 95-108, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27212019

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model. A substantial (10-60 times) increase of NOX2 expression was detected in three etiologically different ALS mouse models while up-regulation of some other NOX isoforms was model-specific. In human spinal cord samples, high NOX2 expression was detected in microglia. In contrast to previous publications, survival of SOD1(G93A) mice was not modified upon breeding with constitutive NOX1 and NOX2 deficient mice. As genetic deficiency of a single NOX isoform is not necessarily predictive of a pharmacological intervention, we treated SOD1(G93A) mice with broad-spectrum NOX inhibitors perphenazine and thioridazine. Both compounds reached in vivo CNS concentrations compatible with NOX inhibition and thioridazine significantly decreased superoxide levels in the spinal cord of SOD1(G93A) mice in vivo. Yet, neither perphenazine nor thioridazine prolonged survival. Thioridazine, but not perphenazine, dampened the increase of microglia markers in SOD1(G93A) mice. Thioridazine induced an immediate and temporary enhancement of motor performance (rotarod) but its precise mode of action needs further investigation. Additional studies using specific NOX inhibitors will provide further evidence on the relevance of NOX as drug targets for ALS and other neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Perfenazina/administração & dosagem , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/genética , Tioridazina/administração & dosagem
20.
Antioxid Redox Signal ; 23(5): 490-513, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483328

RESUMO

SIGNIFICANCE: Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES: The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES: Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS: Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos/metabolismo , NADPH Oxidases/metabolismo , Espermatozoides/metabolismo , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA