Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 108(6): 1544-1554, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700401

RESUMO

Hemophilia A (HA) cell therapy approaches in pediatric individuals require suitable factor (F)VIII-producing cells for stable engraftment. Liver sinusoidal endothelial cells (LSEC) and hematopoietic stem cells (HSC) have been demonstrated to be suitable for the treatment of adult HA mice. However, after transplantation in busulfan (BU)-conditioned newborn mice, adult LSEC/HSC cannot efficiently engraft, while murine fetal liver (FL) hemato/vascular cells from embryonic day 11-13 of gestation (E11-E13), strongly engraft the hematopoietic and endothelial compartments while also secreting FVIII. Our aim was to investigate the engraftment of FL cells in newborn HA mice to obtain a suitable "proof of concept" for the development of a new HA treatment in neonates. Hence, we transplanted FL E11 or E13 cells and adult bone marrow (BM) cells into newborn HA mice with or without BU preconditioning. Engraftment levels and FVIII activity were assessed starting from 6 weeks after transplantation. FL E11-E13+ BU transplanted newborns reached up to 95% engraftment with stable FVIII activity levels observed for 16 months. FL E13 cells showed engraftment ability even in the absence of BU preconditioning, while FL E11 cells did not. BM BU transplanted newborn HA mice showed high levels of engraftment; nevertheless, in contrast to FL cells, BM cells cannot engraft HA newborns in BU non-conditioning regimen. Finally, none of the transplanted mice developed anti-FVIII antibodies. Overall, this study sheds some light on the therapeutic potential of healthy FL cells in the cure of HA neonatal/pediatric patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Hemofilia A , Camundongos , Animais , Hemofilia A/terapia , Células Endoteliais , Fígado , Células-Tronco Hematopoéticas , Transplante de Células-Tronco , Bussulfano , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955419

RESUMO

The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.


Assuntos
Fator V/metabolismo , Trombofilia , Fator de von Willebrand , Anticoagulantes , Endotélio Vascular/metabolismo , Fator VIII/genética , Fator VIII/uso terapêutico , Homeostase , Humanos , Proteína C/uso terapêutico , Trombofilia/genética , Fator de von Willebrand/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628611

RESUMO

Factor V deficiency, an ultra-rare congenital coagulopathy, is characterized by bleeding episodes that may be more or less intense as a function of the levels of coagulation factor activity present in plasma. Fresh-frozen plasma, often used to treat patients with factor V deficiency, is a scarcely effective palliative therapy with no specificity to the disease. CRISPR/Cas9-mediated gene editing, following precise deletion by non-homologous end-joining, has proven to be highly effective for modeling on a HepG2 cell line a mutation similar to the one detected in the factor V-deficient patient analyzed in this study, thus simulating the pathological phenotype. Additional CRISPR/Cas9-driven non-homologous end-joining precision deletion steps allowed correction of 41% of the factor V gene mutated cells, giving rise to a newly developed functional protein. Taking into account the plasma concentrations corresponding to the different levels of severity of factor V deficiency, it may be argued that the correction achieved in this study could, in ideal conditions, be sufficient to turn a severe phenotype into a mild or asymptomatic one.


Assuntos
Deficiência do Fator V , Fator V , Sistemas CRISPR-Cas/genética , Fator V/genética , Deficiência do Fator V/genética , Edição de Genes , Humanos , Mutação
4.
Sci Rep ; 12(1): 3149, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210455

RESUMO

Colorectal cancer cells can transfer the oncogene KRAS to distant cells, predisposing them to malignant transformation (Genometastasis Theory). This process could contribute to liver metastasis; besides, hepatic progenitor cells (HPCs) have been found to be involved in liver malignant neoplasms. The objective of this study is to determine if mouse HPCs-Oval cells (OCs)-are susceptible to incorporate Kras GAT (G12D) mutation from mouse colorectal cancer cell line CT26.WT and if OCs with the incorporated mutation behave like malignant cells. To achieve this, three lines of OCs in different conditions were exposed to CT26.WT cells through transwell co-culture for a week. The presence of KrasG12D and capacity to form tumors were analyzed in treated samples by droplet digital PCR and colony-forming assays, respectively. The results showed that the KrasG12D mutation was detected in hepatic culture conditions of undifferentiated OCs and these cells were capable of forming tumors in vitro. Therefore, OCs are susceptible to malignant transformation by horizontal transfer of DNA with KrasG12D mutation in an undifferentiated condition associated with the liver microenvironment. This study contributes to a new step in the understanding of the colorectal metastatic process.


Assuntos
Carcinogênese , Neoplasias Hepáticas , Fígado/metabolismo , Mutação de Sentido Incorreto , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Substituição de Aminoácidos , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA