Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heart Vessels ; 38(12): 1422-1430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37620665

RESUMO

Elevated circulating homocysteine (Hcy) is a well-known risk factor for cardiovascular diseases (CVDs), including coronary artery disease (CAD) and heart failure (HF). It remains unclear how Hcy and its derivatives relate to left ventricular (LV) diastolic function. The aim of the present study was to investigate the relationship between plasma Hcy-related metabolites and diastolic dysfunction (DD) in patients with heart disease (HD). A total of 62 HD patients with preserved LV ejection fraction (LVEF ≥ 50%) were enrolled. Plasma Hcy and its derivatives were measured by liquid chromatography‒mass spectrometry (LC-MS/MS). Spearman's correlation test and multiple linear regression models were used to analyze the associations between metabolite levels and LV diastolic function. The cystine/methionine (CySS/Met) ratio was positively correlated with LV diastolic function, which was defined from the ratio of mitral inflow E and mitral e' annular velocities (E/e') (Spearman's r = 0.43, p < 0.001). When the subjects were categorized into two groups by E/e', the high-E/e' group had a significantly higher CySS/Met ratio than the low-E/e' group (p = 0.002). Multiple linear regression models revealed that the CySS/Met ratio was independently associated with E/e' after adjustment for age, sex, body mass index (BMI), diabetes mellitus, hypertension, chronic kidney disease (CKD), hemoglobin, and lipid peroxide (LPO) {standardized ß (95% CI); 0.14 (0.04-0.23); p = 0.005}. Hcy, CySS, and Met did not show a significant association with E/e' in the same models. A high plasma CySS/Met ratio reflected DD in patients with HD.


Assuntos
Cistina , Disfunção Ventricular Esquerda , Humanos , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia , Metionina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Função Ventricular Esquerda , Volume Sistólico , Diástole
2.
J Appl Lab Med ; 9(4): 728-740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574000

RESUMO

BACKGROUND: Although low high-density lipoprotein cholesterol (HDL-C) levels are a common metabolic abnormality associated with insulin resistance, their role in cardiovascular risk stratification remains controversial. Recently, we developed a simple, high-throughput, cell-free assay system to evaluate the "cholesterol uptake capacity (CUC)" as a novel concept for HDL functionality. In this study, we assessed the CUC in patients with hypertriglyceridemia and diabetes mellitus. METHODS: The CUC was measured using cryopreserved serum samples from 285 patients who underwent coronary angiography or percutaneous coronary intervention between December 2014 and May 2019 at Kobe University Hospital. RESULTS: The CUC was significantly lower in diabetic patients (n = 125) than in nondiabetic patients (93.0 vs 100.7 arbitrary units (A.U.), P = 0.002). Patients with serum triglyceride (TG) levels >150 mg/dL (n = 94) also had a significantly lower CUC (91.8 vs 100.0 A.U., P = 0.004). Furthermore, the CUC showed a significant inverse correlation with TG, hemoglobin A1c (Hb A1c), homeostasis model assessment of insulin resistance (HOMA-IR), and body mass index (BMI). Finally, the HDL-C/Apolipoprotein A1 (ApoA1) ratio, calculated as a surrogate index of HDL particle size, was significantly positively correlated with the CUC (r2 = 0.49, P < 0.001), but inversely correlated with TG levels (r2 = -0.30, P < 0.001). CONCLUSIONS: The CUC decreased in patients with hypertriglyceridemia and diabetes mellitus, and HDL particle size was a factor defining the CUC and inversely correlated with TG levels, suggesting that impaired CUC in insulin-resistant states was partially due to the shift in HDL towards smaller particles. These findings provide a better understanding of the mechanisms underlying impaired HDL functionality.


Assuntos
HDL-Colesterol , Hipertrigliceridemia , Resistência à Insulina , Triglicerídeos , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/complicações , Hipertrigliceridemia/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , HDL-Colesterol/sangue , Triglicerídeos/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/diagnóstico , Apolipoproteína A-I/sangue , Colesterol/sangue , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise
3.
Nutrients ; 13(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34578988

RESUMO

Recently we established a cell-free assay to evaluate "cholesterol uptake capacity (CUC)" as a novel concept for high-density lipoprotein (HDL) functionality and demonstrated the feasibility of CUC for coronary risk stratification, although its regulatory mechanism remains unclear. HDL fluidity affects cholesterol efflux, and trans fatty acids (TFA) reduce lipid membrane fluidity when incorporated into phospholipids (PL). This study aimed to clarify the effect of TFA in HDL-PL on CUC. Serum was collected from 264 patients after coronary angiography or percutaneous coronary intervention to measure CUC and elaidic acid levels in HDL-PL, and in vitro analysis using reconstituted HDL (rHDL) was used to determine the HDL-PL mechanism affecting CUC. CUC was positively associated with HDL-PL levels but negatively associated with the proportion of elaidic acid in HDL-PL (elaidic acid in HDL-PL/HDL-PL ratio). Increased elaidic acid-phosphatidylcholine (PC) content in rHDL exhibited no change in particle size or CUC compared to rHDL containing oleic acid in PC. Recombinant human lecithin-cholesterol acyltransferase (LCAT) enhanced CUC, and LCAT-dependent enhancement of CUC and LCAT-dependent cholesterol esterification were suppressed in rHDL containing elaidic acid in PC. Therefore, CUC is affected by HDL-PL concentration, HDL-PL acyl group composition, and LCAT-dependent cholesterol esterification. Elaidic acid precipitated an inhibition of cholesterol uptake and maturation of HDL; therefore, modulation of HDL-PL acyl groups could improve CUC.


Assuntos
Doenças Cardiovasculares/sangue , HDL-Colesterol/sangue , Ácidos Oleicos/fisiologia , Idoso , Transporte Biológico , Biomarcadores/sangue , Feminino , Humanos , Masculino , Lipídeos de Membrana/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolinas/sangue , Fosfolipídeos/sangue , Sistema de Registros , Ácidos Graxos trans/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA