RESUMO
The erythroblastic island (EBI), composed of a central macrophage surrounded by maturing erythroblasts, is the erythroid precursor niche. Despite numerous studies, its precise composition is still unclear. Using multispectral imaging flow cytometry, in vitro island reconstitution, and single-cell RNA sequencing of adult mouse bone marrow (BM) EBI-component cells enriched by gradient sedimentation, we present evidence that the CD11b+ cells present in the EBIs are neutrophil precursors specifically associated with BM EBI macrophages, indicating that erythro-(myelo)-blastic islands are a site for terminal granulopoiesis and erythropoiesis. We further demonstrate that the balance between these dominant and terminal differentiation programs is dynamically regulated within this BM niche by pathophysiological states that favor granulopoiesis during anemia of inflammation and favor erythropoiesis after erythropoietin stimulation. Finally, by molecular profiling, we reveal the heterogeneity of EBI macrophages by cellular indexing of transcriptome and epitope sequencing of mouse BM EBIs at baseline and after erythropoietin stimulation in vivo and provide a searchable online viewer of these data characterizing the macrophage subsets serving as hematopoietic niches. Taken together, our findings demonstrate that EBIs serve a dual role as niches for terminal erythropoiesis and granulopoiesis and the central macrophages adapt to optimize production of red blood cells or neutrophils.
Assuntos
Eritropoese , Eritropoetina , Animais , Camundongos , Epitopos , Eritroblastos , Eritropoese/fisiologiaRESUMO
BACKGROUND: Spur-cell anemia sometimes accompanies cholestasis. We postulated that even in the absence of spur-cells, cholestasis might alter red blood cell (RBC) osmotic fragility and deformability. Therefore, we assessed these RBC measures by ektacytometry in pediatric patients. METHODS: We conducted a single center, prospective, cross-sectional investigation of RBC membrane characteristics by ektacytometry in pediatric patients with intra- and extrahepatic cholestasis followed at Cincinnati Children's Hospital Medical Center. We measured red cell membrane fragility and deformability in 17 patients with cholestasis and 17 age-matched controls without cholestasis. RESULTS: Patients with cholestasis had decreased RBC osmotic fragility compared to controls, with a significant left shift in Omin, indicating increased RBC surface-to-volume ratio. One showed spur cell morphology. However, the other 16 had no spurring, indicating that ektacytometry is a sensitive method to detect RBC membrane abnormalities. Left shift of Omin positively correlated with serum conjugated bilirubin levels and even more negatively with serum vitamin E concentration. CONCLUSIONS: This study suggests that subclinical red blood cell membrane abnormalities exist in most pediatric patients with cholestasis, increasing risk for hemolysis when subjected to oxidative stress. Hence minimizing pro-oxidants exposure and maximizing antioxidant exposure is advisable for this group. GOV IDENTIFIER: NCT05582447 https://clinicaltrials.gov/ct2/show/NCT05582447?cond=Cholestasis&cntry=US&state=US%3AOH&city=Cincinnati&draw=2&rank=2 . IMPACT: Spur cell anemia due to decreased red cell osmotic fragility and decreased deformability has been reported among patients with cholestasis. Ektacytometry is a reliable, reproducible method to measure red cell osmotic fragility and deformability. Few data describe red cell osmotic fragility or deformability in patients with cholestasis who may or may not have spur cell anemia. Ektacytometry shows that red cell osmotic fragility and deformability are decreased in many children with cholestasis even when spur cell anemia has not yet occurred. Factors associated with decreased osmotic fragility include elevated serum bilirubin, elevated serum bile acids, and decreased serum vitamin E.
Assuntos
Anemia , Colestase , Humanos , Criança , Estudos Prospectivos , Estudos Transversais , Eritrócitos , Colestase/diagnóstico , Colestase/metabolismo , Bilirrubina/metabolismo , Vitamina E/metabolismoRESUMO
PURPOSE OF REVIEW: The identity of the erythroblastic island (EBI) macrophage (MÏ) has been under investigation for decades since it was recognized as the first hematopoietic niche 'nursing' terminal erythropoiesis. This review will focus on the current insights to the characteristics and the role of the EBI MÏ balancing terminal erythropoiesis and granulopoiesis. RECENT FINDINGS: While the EBI has long been known as the niche for erythroid precursors, significant advancements in biology research technologies, including optimization of EBI enrichment protocols, single-cell ribonucleic acid sequencing, and imaging flow cytometry, have recently revealed that granulocytic precursors co-exist in this niche, termed erythromyeloblastic island (EMBI). More importantly, the balance noted at baseline between terminal granulopoiesis and erythropoiesis within EBIs/EMBIs is altered with diseases affecting hematopoiesis, such as stress erythropoiesis and inflammatory conditions causing anemia of inflammation. The role of the EMBI niche has yet to be fully investigated mechanistically, however, a notable degree of transcriptional and cell surface marker heterogeneity has been identified for the EMBI MÏ, implicating its plasticity and diverse function. SUMMARY: Terminal erythropoiesis and granulopoiesis are regulated within the EMBI. Investigations of their balance within this niche in health and disease may reveal new targets for treatment of diseases of terminal hematopoiesis.
Assuntos
Anemia , Eritropoese , Humanos , Eritroblastos/metabolismo , Anemia/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismoRESUMO
The Congenital Dyserythropoietic Anemia (CDA) Registry was established with the goal to facilitate investigations of natural history, biology, and molecular pathogenetic mechanisms of CDA. Three unrelated individuals enrolled in the registry had a syndrome characterized by CDA and severe neurodevelopmental delay. They were found to have missense mutations in VPS4A, a gene coding for an ATPase that regulates the ESCRT-III machinery in a variety of cellular processes including cell division, endosomal vesicle trafficking, and viral budding. Bone marrow studies showed binucleated erythroblasts and erythroblasts with cytoplasmic bridges indicating abnormal cytokinesis and abscission. Circulating red blood cells were found to retain transferrin receptor (CD71) in their membrane, demonstrating that VPS4A is critical for normal reticulocyte maturation. Using proband-derived induced pluripotent stem cells (iPSCs), we have successfully modeled the hematologic aspects of this syndrome in vitro, recapitulating their dyserythropoietic phenotype. Our findings demonstrate that VPS4A mutations cause cytokinesis and trafficking defects leading to a human disease with detrimental effects to erythropoiesis and neurodevelopment.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Anemia Diseritropoética Congênita/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adenosina Trifosfatases/metabolismo , Anemia Diseritropoética Congênita/patologia , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Citocinese , Endossomos/metabolismo , Eritroblastos/metabolismo , Eritrócitos/citologia , Eritropoese , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Transporte Proteico , Reticulócitos/citologiaRESUMO
Etavopivat is an investigational, oral, small molecule activator of erythrocyte pyruvate kinase (PKR) in development for the treatment of sickle cell disease (SCD) and other hemoglobinopathies. PKR activation is proposed to ameliorate the sickling of SCD red blood cells (RBCs) through multiple mechanisms, including reduction of 2,3-diphosphoglycerate (2,3-DPG), which consequently increases hemoglobin (Hb)-oxygen affinity; increased binding of oxygen reduces sickle hemoglobin polymerization and sickling. In addition, PKR activation increases adenosine triphosphate (ATP) produced via glycolytic flux, which helps preserve membrane integrity and RBC deformability. We evaluated the pharmacodynamic response to etavopivat in nonhuman primates (NHPs) and in healthy human subjects and evaluated the effects in RBCs from patients with SCD after ex vivo treatment with etavopivat. A single dose of etavopivat decreased 2,3-DPG in NHPs and healthy subjects. Hb-oxygen affinity was significantly increased in healthy subjects after 24 hours. After daily dosing of etavopivat over 5 consecutive days in NHPs, ATP was increased by 38% from baseline. Etavopivat increased Hb-oxygen affinity and reduced sickling in RBCs collected from patients with SCD with either homozygous hemoglobin S or hemoglobin S and C disease. Collectively, these results demonstrate the ability of etavopivat to decrease 2,3-DPG and increase ATP, resulting in increased Hb-oxygen affinity and improved sickle RBC function. Etavopivat is currently being evaluated in clinical trials for the treatment of SCD. SIGNIFICANCE STATEMENT: Etavopivat, a small molecule activator of the glycolytic enzyme erythrocyte pyruvate kinase, decreased 2,3-diphosphoglycerate in red blood cells (RBCs) from nonhuman primates and healthy subjects and significantly increased hemoglobin (Hb)-oxygen affinity in healthy subjects. Using ex vivo RBCs from donors with sickle cell disease (SCD) (homozygous hemoglobin S or hemoglobin S and C genotype), etavopivat increased Hb-oxygen affinity and reduced sickling under deoxygenation. Etavopivat shows promise as a treatment for SCD that could potentially reduce vaso-occlusion and improve anemia.
Assuntos
Anemia Falciforme , Hemoglobina Falciforme , 2,3-Difosfoglicerato/metabolismo , 2,3-Difosfoglicerato/farmacologia , Trifosfato de Adenosina/metabolismo , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Animais , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/farmacologia , Hemoglobina Falciforme/uso terapêutico , Hemoglobinas/metabolismo , Humanos , Oxigênio/metabolismo , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Piruvato Quinase/uso terapêutico , Ácido Pirúvico/farmacologiaRESUMO
Congenital dyserythropoietic anemias (CDAs) are characterized by ineffective erythropoiesis and distinctive erythroblast abnormalities; the diagnosis is often missed or delayed due to significant phenotypic heterogeneity. We established the CDA Registry of North America (CDAR) to study the natural history of CDA and create a biorepository to investigate the pathobiology of this heterogeneous disease. Seven of 47 patients enrolled so far in CDAR have CDA-I due to biallelic CDAN1 mutations. They all presented with perinatal anemia and required transfusions during infancy. Anemia spontaneously improved during infancy in three patients; two became transfusion-independent rapidly after starting interferon-α2; and two remain transfusion-dependent at last follow-up at ages 5 and 30 y.o. One of the transfusion-dependent patients underwent splenectomy at 11 y.o due to misdiagnosis and returned to medical attention at 27 y.o with severe hemolytic anemia and pulmonary hypertension. All patients developed iron overload even without transfusions; four were treated with chelation. Genetic testing allowed for more rapid and accurate diagnosis; the median age of confirmed diagnosis in our cohort was 3 y.o compared to 17.3 y.o historically. In conclusion, CDAR provides an organized research network for multidisciplinary clinical and research collaboration to conduct natural history and biologic studies in CDA.
Assuntos
Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/terapia , Adolescente , Adulto , Anemia Diseritropoética Congênita/epidemiologia , Anemia Diseritropoética Congênita/genética , Transfusão de Sangue , Medula Óssea/patologia , Criança , Pré-Escolar , Feminino , Testes Genéticos , Glicoproteínas/genética , Humanos , Masculino , Mutação , América do Norte/epidemiologia , Proteínas Nucleares/genética , Sistema de Registros , Adulto JovemRESUMO
Many hypotheses have been proposed to explain how a glutamate to valine substitution in sickle haemoglobin (HbS) can cause sickle cell disease (SCD). We propose and document a new mechanism in which elevated tyrosine phosphorylation of Band 3 initiates sequelae that cause vaso-occlusion and the symptoms of SCD. In this mechanism, denaturation of HbS and release of heme generate intracellular oxidants which cause inhibition of erythrocyte tyrosine phosphatases, thus permitting constitutive tyrosine phosphorylation of Band 3. This phosphorylation in turn induces dissociation of the spectrin-actin cytoskeleton from the membrane, leading to membrane weakening, discharge of membrane-derived microparticles (which initiate the coagulation cascade) and release of cell-free HbS (which consumes nitric oxide) and activates the endothelium to express adhesion receptors). These processes promote vaso-occlusive events which cause SCD. We further show that inhibitors of Syk tyrosine kinase block Band 3 tyrosine phosphorylation, prevent release of cell-free Hb, inhibit discharge of membrane-derived microparticles, increase sickle cell deformability, reduce sickle cell adhesion to human endothelial cells, and enhance sickle cell flow through microcapillaries. In view of reports that imatinib (a Syk inhibitor) successfully treats symptoms of sickle cell disease, we suggest that Syk tyrosine kinase inhibitors warrant repurposing as potential treatments for SCD.
Assuntos
Anemia Falciforme/tratamento farmacológico , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Anemia Falciforme/sangue , Adesão Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos Anormais/efeitos dos fármacos , Eritrócitos Anormais/metabolismo , Hemoglobina Falciforme/análise , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Estresse Oxidativo , Oxigênio/sangue , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Plasma , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Traço Falciforme/sangue , Talassemia beta/sangueRESUMO
Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD.
Assuntos
Elementos Alu/genética , Anemia Hemolítica Congênita não Esferocítica/genética , Mutagênese Insercional , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos/genética , Anquirinas/genética , Sequência de Bases , Éxons/genética , Feminino , Humanos , Lactente , Masculino , Oriente Médio , Piruvato Quinase/genéticaRESUMO
M-CSF receptor signaling supports the development and survival of mononuclear phagocytes and is thought to play a role in post burn anemia by promoting myeloid lineage bias. We found M-CSF secretion was increased in burn patients and a murine model of post burn ACI, so we neutralized M-CSF in ACI mice to determine if erythropoiesis was improved. Instead, M-CSF blockade further impaired erythropoiesis and erythroid cells access to iron. M-CSF blockade enhanced inflammatory cytokine secretion, further increased systemic neutrophil counts, and led to tissue iron sequestration that was dependent, in part, on augmented IL-6 secretion which induced hepcidin. Deleterious effects of post burn M-CSF blockade were associated with arrest of an iron recycling gene expression signature in the liver and spleen that included Spi-C transcription factor and heme oxygenase-1, which promote heme metabolism and confer a non-inflammatory tone in macrophages. Hepatic induction of these factors in ACI mice was consistent with a recovery of ferroportin gene expression and reflected an M-CSF dependent expansion and differentiation of Spi-C+ monocytes into Kupffer cells. Together, this data indicates M-CSF secretion supports a homeostatic iron recycling program that plays a key role in the maintenance of erythroid cells access to iron following burn injury.
Assuntos
Anemia/etiologia , Queimaduras/metabolismo , Células Eritroides/metabolismo , Ferro/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Queimaduras/complicações , Estado Terminal , Eritropoese , Feminino , Homeostase , Humanos , Interleucina-6/metabolismo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Baço/imunologiaRESUMO
CHD8 is an ATP-dependent chromatin-remodeling factor whose monoallelic mutation defines a subtype of autism spectrum disorders (ASDs). Previous work found that CHD8 is required for the maintenance of hematopoiesis by integrating ATM-P53-mediated survival of hematopoietic stem/progenitor cells (HSPCs). Here, by using Chd8F/FMx1-Cre combined with a Trp53F/F mouse model that suppresses apoptosis of Chd8-/- HSPCs, we identify CHD8 as an essential regulator of erythroid differentiation. Chd8-/-P53-/- mice exhibited severe anemia conforming to congenital dyserythropoietic anemia (CDA) phenotypes. Loss of CHD8 leads to drastically decreased numbers of orthochromatic erythroblasts and increased binucleated and multinucleated basophilic erythroblasts with a cytokinesis failure in erythroblasts. CHD8 binds directly to the gene bodies of multiple Rho GTPase signaling genes in erythroblasts, and loss of CHD8 results in their dysregulated expression, leading to decreased RhoA and increased Rac1 and Cdc42 activities. Our study shows that autism-associated CHD8 is essential for erythroblast cytokinesis.
Assuntos
Transtorno Autístico , Cromatina , Citocinese , Proteínas de Ligação a DNA , Eritroblastos , Proteínas rho de Ligação ao GTP , Animais , Transtorno Autístico/metabolismo , Cromatina/metabolismo , Citocinese/fisiologia , Proteínas de Ligação a DNA/metabolismo , Eritroblastos/metabolismo , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
In this work, we utilized a parameterization model of ektacytometry to quantify the bulk rigidity of the rigid red blood cell (RBC) population in sickle cell disease (SCD) patients. Current ektacytometry techniques implement laser diffraction viscometry to estimate the RBC deformability in a whole blood sample. However, the diffraction measurement is an average of all cells present in the measured sample. By coupling an existing parameterization model of ektacytometry to an artificially rigid RBC model, we formulated an innovative system for estimating the average rigidity of the rigid RBC population in SCD blood. We demonstrated that this method could more accurately determine the bulk stiffness of the rigid RBC populations. This information could potentially help develop the ektacytometry technique as a tool for assessing disease severity in SCD patients, offering novel insights into the disease pathology and treatment.
Assuntos
Anemia Falciforme/sangue , Eritrócitos/patologia , Algoritmos , Membrana Eritrocítica/patologia , HumanosRESUMO
Sickle cell anemia (SCA) is a hereditary hemoglobinopathy with a variable phenotype. There is no single biomarker that adequately predicts disease severity and can be used to monitor treatment response in patients in clinical trials and clinical care. The use of clinical outcomes, such as vaso-occlusive crises (VOC), requires long and expensive studies, sometimes with inconclusive results. To address these limitations, there are several biomarkers under study to improve the ability to predict complications and assess treatment response in both clinical and research settings. Oxygen gradient ektacytometry, also called as oxygenscan, is an assay that measures the effects of deoxygenation and reoxygenation on red blood cell (RBC) deformability and is gaining popularity in SCA research, because it captures the dynamic sickling capacity of a patient's RBCs as they are subjected to an oxygen gradient under steady shear stress. We describe here the oxygenscan methodology and evaluate the correlation between oxygenscan parameters and more well-known biomarkers of SCA such as fetal hemoglobin (HbF), F-cells, and dense red blood cells (DRBCs). Our data indicate that the oxygenscan curve is affected by all these parameters and the result incorporates the effects of %HbF, %F-cells, RBC hydration, and RBC membrane deformability.
RESUMO
Hereditary spherocytosis (HS) is the most common red blood cell (RBC) membrane disorder causing hereditary hemolytic anemia. Patients with HS have defects in the genes coding for ankyrin (ANK1), band 3 (SLC4A1), protein 4.2 (EPB42), and α (SPTA1) or ß-spectrin (SPTB). Severe recessive HS is most commonly due to biallelic SPTA1 mutations. α-spectrin is produced in excess in normal erythroid cells, therefore SPTA1-associated HS ensues with mutations causing significant decrease of normal protein expression from both alleles. In this study, we systematically compared genetic, rheological, and protein expression data to the varying clinical presentation in eleven patients with SPTA1-associated HS. The phenotype of HS in this group of patients ranged from moderately severe to severe transfusion-dependent anemia and up to hydrops fetalis which is typically fatal if transfusions are not initiated before term delivery. The pathogenicity of the mutations could be corroborated by reduced SPTA1 mRNA expression in the patients' reticulocytes. The disease severity correlated to the level of α-spectrin protein in their RBC cytoskeleton but was also affected by other factors. Patients carrying the low expression αLEPRA allele in trans to a null SPTA1 mutation were not all transfusion dependent and their anemia improved or resolved with partial or total splenectomy, respectively. In contrast, patients with near-complete or complete α-spectrin deficiency have a history of having been salvaged from fatal hydrops fetalis, either because they were born prematurely and started transfusions early or because they had intrauterine transfusions. They have suboptimal reticulocytosis or reticulocytopenia and remain transfusion dependent even after splenectomy; these patients require either lifetime transfusions and iron chelation or stem cell transplant. Comprehensive genetic and phenotypic evaluation is critical to provide accurate diagnosis in patients with SPTA1-associated HS and guide toward appropriate management.
RESUMO
[This corrects the article DOI: 10.3389/fphys.2019.00815.].
RESUMO
Mammalian erythropoiesis occurs within erythroblastic islands (EBIs), niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example) provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC), which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b) can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We found that VCAM-1, F4/80, and CD169 are expressed heterogeneously by the central macrophages within the EBIs, while CD11b, although abundantly expressed by cells within the islands, is not expressed on the EBI macrophages. Moreover, differences in the phenotype of EBIs in rats compared to mice point to potential functional differences between these species. These data demonstrate the usefulness of IFC in analysis and characterization of EBIs and more importantly in exploring the heterogeneity and plasticity of EBI macrophages.