Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Proc Biol Sci ; 289(1968): 20212461, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135343

RESUMO

This meta-study uses phylogenetic scaling models across more than 30 species, spanning five orders of magnitude in body mass, to show that cardiac capillary numerical density and mitochondrial volume density decrease with body mass raised to the -0.07 ± 0.03 and -0.04 ± 0.01 exponents, respectively. Thus, while an average 10 g mammal has a cardiac capillary density of approximately 4150 mm-2 and a mitochondrial density of 33%, a 1 t mammal has considerably lower corresponding values of 1850 mm-2 and 21%. These similar scaling trajectories suggest quantitative matching for the primary oxygen supply and oxygen consuming structures of the heart, supporting economic design at the cellular level of the oxygen cascade in this aerobic organ. These scaling trajectories are nonetheless somewhat shallower than the exponent of -0.11 calculated for the maximum external mechanical power of the cardiac tissue, under conditions of heavy exercise, when oxygen flow between capillaries and mitochondria is probably fully exploited. This mismatch, if substantiated, implies a declining external mechanical efficiency of the heart with increasing body mass, whereby larger individuals put more energy in but get less energy out, a scenario with implications for cardiovascular design, aerobic capacity and limits of body size.


Assuntos
Capilares , Elefantes , Animais , Humanos , Mitocôndrias , Oxigênio , Consumo de Oxigênio , Filogenia , Musaranhos
2.
J Anat ; 240(1): 94-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405399

RESUMO

If arteries penetrate bones through foramina, regional artery blood flow rates can be estimated from the foramen sizes. Femoral bone blood flow rates estimated from nutrient foramen sizes were previously not absolute, but only a relative blood flow index (Qi ), because the size relationship between the foramen and the occupying artery was unknown. The current study used vascular contrast and micro-computerized tomographic scanning to investigate femoral nutrient foramen and nutrient artery sizes in three groups of sub-adult chickens (non-laying hens, laying hens, and roosters) of similar ages. The results indicate that the cross-sectional area of the nutrient artery lumen occupies approximately 20.2 ± 4.1% of the foramen for femora with only one foramen. Artery lumen size is significantly correlated with foramen size. Vascular contrast imaging is capable of estimating blood flow rates through nutrient arteries, as blood flow rates estimated from artery lumen casts are similar to blood flow rates measured by infusion of fluorescent-labeled microspheres. Laying hens tend to have higher nutrient artery perfusion rates than non-laying hens, probably due to extra oxygen and calcium requirements for eggshell production, although the calculated blood flow difference was not statistically significant. Histological embedding and sectioning along with vascular contrast imaging reveal variable nutrient foramen morphology and nutrient artery location among femora with more than one nutrient foramen.


Assuntos
Galinhas , Casca de Ovo , Animais , Artérias , Feminino , Masculino , Nutrientes , Perfusão
3.
J Exp Biol ; 224(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34312667

RESUMO

The metabolic rate of vertebrate bone tissue is related to bone growth, repair and homeostasis, which are all dependent on life stage. Bone metabolic rate is difficult to measure directly, but absolute blood flow rate () should reflect local tissue oxygen requirements. A recent 'foramen technique' has derived an index of blood flow rate () by measuring nutrient foramen sizes of long bones. is assumed to be proportional to ; however, the assumption has never been tested. This study used fluorescent microsphere infusion to measure femoral bone in anaesthetized non-laying hens, laying hens and roosters. Mean mass-specific cardiac output was 338±38 ml min-1 kg-1, and the two femora received 0.63±0.10% of this. Laying hens had higher wet bone mass-specific to femora (0.23±0.09 ml min-1 g-1) than the non-laying hens (0.12±0.06 ml min-1 g-1) and roosters (0.14±0.04 ml min-1 g-1), presumably associated with higher bone calcium mobilization during eggshell production. Estimated metabolic rate of femoral bone was 0.019 ml O2 min-1 g-1. Femoral increased significantly with body mass, but was not correlated with nutrient foramen radius (r), probably because of a narrow range in foramen radius. Over all 18 chickens, femoral shaft was 1.07±0.30 ml min-1 mm-1. Mean in chickens was significantly higher than predicted by an allometric relationship for adult cursorial bird species, possibly because the birds were still growing.


Assuntos
Galinhas , Casca de Ovo , Animais , Ovos , Feminino , Fêmur , Masculino , Microesferas
4.
J Anat ; 236(3): 522-530, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31710396

RESUMO

Blood flow rate ( Q˙ ) in relation to arterial lumen radius (ri ) is commonly modelled according to theoretical equations and paradigms, including Murray's Law ( Q˙ ∝ ri3 ) and da Vinci's Rule ( Q˙ ∝ ri2 ). Wall shear stress (τ) is independent of ri with Murray's Law (τ âˆ  ri0 ) and decreases with da Vinci's Rule (τ âˆ  ri-1 ). These paradigms are tested empirically with a meta-analysis of the relationships between Q˙ and ri in seven major arteries of the human cephalic circulation from 19 imaging studies in which both variables were presented. The analysis shows that Q˙ ∝ ri2.16 and τ âˆ  ri-1.02 , more consistent with da Vinci's Rule than Murray's Law. This meta-analysis provides standard values for Q˙ , ri and τ in the human cephalic arteries that may be a useful baseline in future investigations. On average, the paired internal carotid arteries supply 75%, and the vertebral arteries supply 25%, of total brain blood flow. The internal carotid arteries contribute blood entirely to the anterior and middle cerebral arteries and also partly to the posterior cerebral arteries via the posterior communicating arteries of the circle of Willis. On average, the internal carotid arteries provide 88% of the blood flow to the cerebrum and the vertebral arteries only 12%.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Hemodinâmica/fisiologia , Humanos , Estresse Mecânico
5.
J Anat ; 236(2): 357-369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713844

RESUMO

Some blood vessels enter bones through foramina, leaving the size of the foramen as a gauge for estimating the rate of blood flow and hence the metabolic rate of the supplied tissues. Foramen dimensions have been measured using varied methods in previous foramen studies, to relate regional blood flows with associated physiological processes. With the increasing interests in this 'foramen technique', standard methods with minimized measurement errors are therefore required. This study provides details of microphotographic and micro-computerized tomographic methods, and introduces a new alternative method, which uses impression material to measure foramen dimensions. The three methods are compared and the results indicate that all of them are capable of obtaining precise and accurate foramen dimension values, although they all have limitations. A microphotograph of the external opening is suggested to be the standard method because of its ease of use, but the alternative methods provide more detailed information on foramen shape. If the foramen is mainly occupied by one artery, blood flow rates can be calculated from foramen size and artery wall-lumen ratio, which is evaluated from the literature survey in this study. If veins or nerves also penetrate the foramen, a relative index of blood flow rate is nevertheless possible for comparative purposes.


Assuntos
Osso e Ossos/diagnóstico por imagem , Hemodinâmica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Tomografia Computadorizada por Raios X , Humanos
6.
Proc Biol Sci ; 286(1915): 20192208, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31718497

RESUMO

Brain metabolic rate (MR) is linked mainly to the cost of synaptic activity, so may be a better correlate of cognitive ability than brain size alone. Among primates, the sizes of arterial foramina in recent and fossil skulls can be used to evaluate brain blood flow rate, which is proportional to brain MR. We use this approach to calculate flow rate in the internal carotid arteries (Q˙ICA), which supply most of the primate cerebrum. Q˙ICA is up to two times higher in recent gorillas, chimpanzees and orangutans compared with 3-million-year-old australopithecine human relatives, which had equal or larger brains. The scaling relationships between Q˙ICA and brain volume (Vbr) show exponents of 1.03 across 44 species of living haplorhine primates and 1.41 across 12 species of fossil hominins. Thus, the evolutionary trajectory for brain perfusion is much steeper among ancestral hominins than would be predicted from living primates. Between 4.4-million-year-old Ardipithecus and Homo sapiens, Vbr increased 4.7-fold, but Q˙ICA increased 9.3-fold, indicating an approximate doubling of metabolic intensity of brain tissue. By contrast, Q˙ICA is proportional to Vbr among haplorhine primates, suggesting a constant volume-specific brain MR.


Assuntos
Circulação Cerebrovascular , Cérebro/irrigação sanguínea , Hominidae/fisiologia , Animais , Evolução Biológica , Fósseis , Especificidade da Espécie
7.
J Anat ; 235(1): 96-105, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993709

RESUMO

Scaling of the heart across development can reveal the degree to which variation in cardiac morphology depends on body mass. In this study, we assessed the scaling of heart mass, left and right ventricular masses, and ventricular mass ratio, as a function of eviscerated body mass across fetal and postnatal development in Horro sheep Ovis aries (~50-fold body mass range; N = 21). Whole hearts were extracted from carcasses, cleaned, dissected into chambers and weighed. We found a biphasic relationship when heart mass was scaled against body mass, with a conspicuous 'breakpoint' around the time of birth, manifest not by a change in the scaling exponent (slope), but rather a jump in the elevation. Fetal heart mass (g) increased with eviscerated body mass (Mb , kg) according to the power equation 4.90 Mb0.88 ± 0.26 (± 95%CI) , whereas postnatal heart mass increased according to 10.0 Mb0.88 ± 0.10 . While the fetal and postnatal scaling exponents are identical (0.88) and reveal a clear dependence of heart mass on body mass, only the postnatal exponent is significantly less than 1.0, indicating the postnatal heart becomes a smaller component of body mass as the body grows, which is a pattern found frequently with postnatal cardiac development among mammals. The rapid doubling in heart mass around the time of birth is independent of any increase in body mass and is consistent with the normalization of wall stress in response to abrupt changes in volume loading and pressure loading at parturition. We discuss variation in scaling patterns of heart mass across development among mammals, and suggest that the variation results from a complex interplay between hard-wired genetics and epigenetic influences.


Assuntos
Coração , Ovinos , Animais , Tamanho Corporal , Desenvolvimento Fetal , Coração/anatomia & histologia , Coração/embriologia , Mamíferos/anatomia & histologia , Mamíferos/embriologia , Morfogênese , Ovinos/anatomia & histologia , Ovinos/embriologia
8.
J Exp Biol ; 222(Pt 7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948497

RESUMO

Insects have a gas-filled respiratory system, which provides a challenge for those that have become aquatic secondarily. Diving beetles (Dytiscidae) use bubbles on the surface of their bodies to supply O2 for their dives and passively gain O2 from the water. However, these bubbles usually require replenishment at the water's surface. A highly diverse assemblage of subterranean dytiscids has evolved in isolated calcrete aquifers of Western Australia with limited/no access to an air-water interface, raising the question of how they are able to respire. We explored the hypothesis that they use cutaneous respiration by studying the mode of respiration in three subterranean dytiscid species from two isolated aquifers. The three beetle species consume O2 directly from the water, but they lack structures on their bodies that could have respiratory function. They also have a lower metabolic rate than other insects. O2 boundary layers surrounding the beetles are present, indicating that O2 diffuses into the surface of their bodies via cutaneous respiration. Cuticle thickness measurements and other experimental results were incorporated into a mathematical model to understand whether cutaneous respiration limits beetle size. The model indicates that the cuticle contributes considerably to resistance in the O2 cascade. As the beetles become larger, their metabolic scope narrows, potentially limiting their ability to allocate energy to mating, foraging and development at sizes above approximately 5 mg. However, the ability of these beetles to utilise cutaneous respiration has enabled the evolution of the largest assemblage of subterranean dytiscids in the world.


Assuntos
Besouros/fisiologia , Consumo de Oxigênio , Fenômenos Fisiológicos Respiratórios , Animais , Metabolismo Basal , Mergulho/fisiologia , Água Subterrânea , Modelos Teóricos , Austrália Ocidental
9.
J Exp Biol ; 222(Pt 7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877224

RESUMO

This meta-study investigated the relationships between blood flow rate (Q̇; cm3 s-1), wall shear stress (τw; dyn cm-2) and lumen radius (ri; cm) in 20 named systemic arteries of nine species of mammals, ranging in mass from 23 g mice to 652 kg cows, at rest. In the dataset, derived from 50 studies, lumen radius varied between 3.7 µm in a cremaster artery of a rat and 11.2 mm in the aorta of a human. The 92 logged data points of [Formula: see text] and ri are described by a single second-order polynomial curve with the equation: [Formula: see text] The slope of the curve increased from approximately 2 in the largest arteries to approximately 3 in the smallest ones. Thus, da Vinci's rule ([Formula: see text]) applies to the main arteries and Murray's law ([Formula: see text]) applies to the microcirculation. A subset of the data, comprising only cephalic arteries in which [Formula: see text] is fairly constant, yielded the allometric power equation: [Formula: see text] These empirical equations allow calculation of resting perfusion rates from arterial lumen size alone, without reliance on theoretical models or assumptions on the scaling of wall shear stress in relation to body mass. As expected, [Formula: see text] of individual named arteries is strongly affected by body mass; however, [Formula: see text] of the common carotid artery from six species (mouse to horse) is also sensitive to differences in whole-body basal metabolic rate, independent of the effect of body mass.


Assuntos
Artérias/anatomia & histologia , Metabolismo Basal , Velocidade do Fluxo Sanguíneo/fisiologia , Mamíferos/anatomia & histologia , Animais , Artérias/fisiologia , Peso Corporal , Humanos , Mamíferos/fisiologia , Resistência ao Cisalhamento
10.
Plant Cell Environ ; 41(2): 367-373, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29121698

RESUMO

The respiration rate of the thermogenic inflorescences of Japanese skunk cabbage Symplocarpus renifolius can reach 300 nmol s-1 g-1 , which is sufficient to raise spadix temperature (Ts ) up to 15 °C above ambient air temperature (Ta ). Respiration rate is inversely related to Ta , such that the Ts achieves a degree of independence from Ta , an effect known as temperature regulation. Here, we measure oxygen consumption rate (Mo2 ) in air (21% O2 in mainly N2 ) and in heliox (21% O2 in He) to investigate the diffusive conductance of the network of gas-filled spaces and the thermoregulatory response. When Ts was clamped at 15 °C, the temperature that produces maximal Mo2 in this species, exposure to high diffusivity heliox increased mean Mo2 significantly from 137 ± 17 to 202 ± 43 nmol s-1 g-1 FW, indicating that respiration in air is normally limited by diffusion in the gas phase and some mitochondria are unsaturated. When Ta was clamped at 15 °C and Ts was allowed to vary, exposure to heliox reduced Ts 1 °C and increased Mo2 significantly from 116 ± 10 to 137 ± 19 nmol s-1 g-1 , indicating that enhanced heat loss by conduction and convection can elicit the thermoregulatory response.


Assuntos
Araceae/metabolismo , Respiração Celular , Flores/metabolismo , Hélio/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Termogênese
11.
J Exp Biol ; 221(Pt 4)2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361586

RESUMO

The nutrient artery passes through the nutrient foramen on the shaft of the femur and supplies more than half of the total blood flow to the bone. Assuming that the size of the nutrient foramen correlates with the size of the nutrient artery, an index of blood flow rate (Qi) can be calculated from nutrient foramen dimensions. Interspecific Qi is proportional to locomotor activity levels in adult mammals, birds and reptiles. However, no studies have yet estimated intraspecific Qi to test for the effects of growth and locomotor development on bone blood flow requirements. In this study, we used micro-CT and medical CT scanning to measure femoral dimensions and foramen radius to calculate femoral Qi during the in-pouch and post-pouch life stages of western grey kangaroos (Macropus fuliginosus) weighing 5.7 g to 70.5 kg and representing a 12,350-fold range in body mass. A biphasic scaling relationship between Qi and body mass was observed (breakpoint at ca. 1-5 kg body mass right before permanent pouch exit), with a steep exponent of 0.96±0.09 (95% CI) during the in-pouch life stage and a statistically independent exponent of -0.59±0.90 during the post-pouch life stage. In-pouch joeys showed Qi values that were 50-100 times higher than those of adult diprotodont marsupials of the same body mass, but gradually converged with them as post-pouch adults. Bone modelling during growth appears to be the main determinant of femoral bone blood flow during in-pouch development, whereas bone remodelling for micro-fracture repair due to locomotion gradually becomes the main determinant when kangaroos leave the pouch and become more active.


Assuntos
Fêmur/irrigação sanguínea , Locomoção , Macropodidae/crescimento & desenvolvimento , Animais , Feminino , Fêmur/crescimento & desenvolvimento , Macropodidae/sangue , Masculino
12.
J Exp Biol ; 221(Pt 17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29997157

RESUMO

The hearts of smaller mammals tend to operate at higher mass-specific mechanical work rates than those of larger mammals. The ultrastructural characteristics of the heart that allow for such variation in work rate are still largely unknown. We have used perfusion-fixation, transmission electron microscopy and stereology to assess the morphology and anatomical aerobic power density of the heart as a function of body mass across six species of wild African antelope differing by approximately 20-fold in body mass. The survival of wild antelope, as prey animals, depends on competent cardiovascular performance. We found that relative heart mass (g kg-1 body mass) decreases with body mass according to a power equation with an exponent of -0.12±0.07 (±95% confidence interval). Likewise, capillary length density (km cm-3 of cardiomyocyte), mitochondrial volume density (fraction of cardiomyocyte) and mitochondrial inner membrane surface density (m2 cm-3 of mitochondria) also decrease with body mass with exponents of -0.17±0.16, -0.06±0.05 and -0.07±0.05, respectively, trends likely to be associated with the greater mass-specific mechanical work rate of the heart in smaller antelope. Finally, we found proportionality between quantitative characteristics of a structure responsible for the delivery of oxygen (total capillary length) and those of a structure that ultimately uses that oxygen (total mitochondrial inner membrane surface area), which provides support for the economic principle of symmorphosis at the cellular level of the oxygen cascade in an aerobic organ.


Assuntos
Antílopes/anatomia & histologia , Coração/anatomia & histologia , Miocárdio/ultraestrutura , África , Animais , Antílopes/fisiologia , Peso Corporal , Coração/fisiologia
13.
Physiology (Bethesda) ; 31(6): 430-441, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27708049

RESUMO

Cardiovascular function in dinosaurs can be inferred from fossil evidence with knowledge of how metabolic rate, blood flow rate, blood pressure, and heart size are related to body size in living animals. Skeletal stature and nutrient foramen size in fossil femora provide direct evidence of a high arterial blood pressure, a large four-chambered heart, a high aerobic metabolic rate, and intense locomotion. But was the heart of a huge, long-necked sauropod dinosaur able to pump blood up 9 m to its head?


Assuntos
Pressão Sanguínea/fisiologia , Tamanho Corporal/fisiologia , Sistema Cardiovascular , Dinossauros , Fósseis , Locomoção/fisiologia , Animais , Humanos
14.
J Anat ; 231(6): 921-930, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034479

RESUMO

Bipedal hopping is used by macropods, including rat-kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle-tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle-tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8-70.5 kg post-pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post-pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight-related gravitational forces. Maximum force is dependent upon the physiological cross-sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of ~1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (~1.4-1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (< 2), and it decreases with body mass with an exponent of -0.15, extrapolating to a predicted rupture at 160 kg. Extinct giant kangaroos weighing 250 kg could therefore not have engaged in fast hopping using 'scaled-up' lower hindlimb morphology of extant western grey kangaroos.


Assuntos
Articulação do Tornozelo/fisiologia , Locomoção/fisiologia , Macropodidae/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Animais , Articulação do Tornozelo/anatomia & histologia , Fenômenos Biomecânicos , Macropodidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
15.
J Exp Biol ; 220(Pt 23): 4432-4439, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187621

RESUMO

Flying insects have the highest mass-specific metabolic rate of all animals. Oxygen is supplied to the flight muscles by a combination of diffusion and convection along the internal air-filled tubes of the tracheal system. This study measured maximum flight metabolic rate (FMR) during tethered flight in the migratory locust Locusta migratoria under varying oxygen partial pressure (PO2 ) in background gas mixtures of nitrogen (N2), sulfur hexafluoride (SF6) and helium (He), to vary O2 diffusivity and gas mixture density independently. With N2 as the sole background gas (normodiffusive-normodense), mass-independent FMR averaged 132±19 mW g-0.75 at normoxia (PO2 =21 kPa), and was not limited by tracheal system conductance, because FMR did not increase in hyperoxia. However, FMR declined immediately with hypoxia, oxy-conforming nearly completely. Thus, the locust respiratory system is matched to maximum functional requirements, with little reserve capacity. With SF6 as the sole background gas (hypodiffusive-hyperdense), the shape of the relationship between FMR and PO2  was similar to that in N2, except that FMR was generally lower (e.g. 24% lower at normoxia). This appeared to be due to increased density of the gas mixture rather than decreased O2 diffusivity, because hyperoxia did not reverse it. Normoxic FMR was not significantly different in He-SF6 (hyperdiffusive-normodense) compared with the N2 background gas, and likewise there was no significant difference between FMR in SF6-He (normodiffusive-hyperdense) compared with the SF6 background gas. The results indicate that convection, not diffusion, is the main mechanism of O2 delivery to the flight muscle of the locust when demand is high.


Assuntos
Metabolismo Energético , Voo Animal , Locusta migratoria/fisiologia , Oxigênio/análise , Animais , Atmosfera/análise , Masculino , Pressão Parcial
16.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34522951
17.
Plant Cell Environ ; 38(4): 827-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25256124

RESUMO

Thermogenic flowers produce heat by intense respiration, and the rates of O2 consumption (Mo2) in some species can exceed those of all other tissues of plants and most animals. By exposing intact flowers to a range of O2 pressures (Po2) and measuring Mo2, we demonstrate that the highest respiration rates exceed the capacity of the O2 diffusive pathway and become diffusion limited in atmospheric air. The male florets on the inflorescence of Arum concinnatum have the highest known mass-specific Mo2 and can be severely diffusion limited. Intact spadices of Japanese skunk cabbage Symplocarpus renifolius are diffusion limited in air only when Mo2 is maximal, but not at lower levels. True flowers of the sacred lotus Nelumbo nucifera and the appendix of Arum concinnatum are never diffusion limited in air. Mo2 - Po2 curves are evaluated quantitatively with the 'Regulation Index', a new tool to measure dependence of Mo2 on ambient Po2 , as well as the conventional 'Critical Po2 '. The study also includes measurements of Po2 within thermogenic tissues with O2-sensitive fibre optics, and reveals that the diffusion pathway is complicated and that O2 can be provided not only from the surface of the tissues but also from the pith of the flower's peduncle.


Assuntos
Araceae/fisiologia , Arum/fisiologia , Flores/fisiologia , Nelumbo/fisiologia , Oxigênio/metabolismo , Transpiração Vegetal/fisiologia , Respiração Celular , Difusão , Temperatura Alta , Inflorescência/fisiologia , Oxigênio/análise , Análise de Regressão , Termogênese/fisiologia
18.
J Exp Biol ; 218(Pt 18): 2840-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26206357

RESUMO

The river bug Aphelocheirus aestivalis is a 40 mg aquatic insect that, as an adult, relies totally on an incompressible physical gill to exchange respiratory gases with the water. The gill (called a 'plastron') consists of a stationary layer of air held in place on the body surface by millions of tiny hairs that support a permanent air-water interface, so that the insect never has to renew the gas at the water's surface. The volume of air in the plastron is extremely small (0.14 mm(3)), under slightly negative pressure and connected to the gas-filled tracheal system through spiracles on the cuticle. Here, we measure PO2 of the water and within the plastron gas with O2-sensing fibre optics to understand the effectiveness and limitations of the gas exchanger. The difference in PO2 is highest in stagnant water and decreases with increasing convection over the surface. Respiration of bugs in water-filled vials varies between 33 and 296 pmol O2 s(-1), depending on swimming activity. The effective thickness of the boundary layer around the plastron was calculated from respiration rate, PO2 difference and plastron surface area, according to the Fick diffusion equation and verified by direct measurements with the fibre-optic probes. In stagnant water, the boundary layer is approximately 500 µm thick, which nevertheless can satisfy the demands of resting bugs, even if the PO2 of the free water decreases to half that of air saturation. Active bugs require thinner boundary layers (∼ 100 µm), which are achieved by living in moving water or by swimming.


Assuntos
Heterópteros/fisiologia , Respiração , Animais , Difusão , Mergulho/fisiologia , Brânquias/metabolismo , Consumo de Oxigênio/fisiologia
19.
J Exp Biol ; 218(Pt 21): 3478-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26538177

RESUMO

Many aquatic insects utilise air bubbles on the surface of their bodies to supply O2 while they dive. The bubbles can simply store O2, as in the case of an 'air store', or they can act as a physical 'gas gill', extracting O2 from the water. Backswimmers of the genus Anisops augment their air store with O2 from haemoglobin cells located in the abdomen. The O2 release from the haemoglobin helps stabilise bubble volume, enabling backswimmers to remain near neutrally buoyant for a period of the dive. It is generally assumed that the backswimmer air store does not act as a gas gill and that gas exchange with the water is negligible. This study combines measurements of dive characteristics under different exotic gases (N2, He, SF6, CO) with mathematical modelling, to show that the air store of the backswimmer Anisops deanei does exchange gases with the water. Our results indicate that approximately 20% of O2 consumed during a dive is obtained directly from the water. Oxygen from the water complements that released from the haemoglobin, extending the period of near-neutral buoyancy and increasing dive duration.


Assuntos
Hemoglobinas/metabolismo , Heterópteros/fisiologia , Oxigênio/metabolismo , Animais , Mergulho , Heterópteros/metabolismo , Água/química
20.
J Exp Biol ; 218(Pt 16): 2631-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26113137

RESUMO

The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates.


Assuntos
Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Marsupiais/fisiologia , Primatas/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Encéfalo/anatomia & histologia , Artéria Carótida Interna/anatomia & histologia , Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular , Humanos , Marsupiais/anatomia & histologia , Tamanho do Órgão , Filogenia , Primatas/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA