Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2321992121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38684000

RESUMO

Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.


Assuntos
DNA , Biopolímeros/química , DNA/química , Difração de Raios X , Conformação de Ácido Nucleico , Modelos Moleculares , Estereoisomerismo
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873040

RESUMO

Artificial self-replication and exponential growth holds the promise of gaining a better understanding of fundamental processes in nature but also of evolving new materials and devices with useful properties. A system of DNA origami dimers has been shown to exhibit exponential growth and selection. Here we introduce mutation and growth advantages to study the possibility of Darwinian-like evolution. We seed and grow one dimer species, AB, from A and B monomers that doubles in each cycle. A similar species from C and D monomers can replicate at a controlled growth rate of two or four per cycle but is unseeded. Introducing a small mutation rate so that AB parents infrequently template CD offspring we show experimentally that the CD species can take over the system in approximately six generations in an advantageous environment. This demonstration opens the door to the use of evolution in materials design.


Assuntos
Evolução Biológica , Replicação do DNA/fisiologia , DNA/química , Aptidão Genética , Animais , Sequência de Bases , Fenômenos Bioquímicos , DNA/genética , Mutação
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001611

RESUMO

The programmability of DNA oligonucleotides has led to sophisticated DNA nanotechnology and considerable research on DNA nanomachines powered by DNA hybridization. Here, we investigate an extension of this technology to the micrometer-colloidal scale, in which observations and measurements can be made in real time/space using optical microscopy and holographic optical tweezers. We use semirigid DNA origami structures, hinges with mechanical advantage, self-assembled into a nine-hinge, accordion-like chemomechanical device, with one end anchored to a substrate and a colloidal bead attached to the other end. Pulling the bead converts the mechanical energy into chemical energy stored by unzipping the DNA that bridges the hinge. Releasing the bead returns this energy in rapid (>20 µm/s) motion of the bead. Force-extension curves yield energy storage/retrieval in these devices that is very high. We also demonstrate remote activation and sensing-pulling the bead enables binding at a distant site. This work opens the door to easily designed and constructed micromechanical devices that bridge the molecular and colloidal/cellular scales.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Oligodesoxirribonucleotídeos/química , Fenômenos Biomecânicos , Humanos , Hibridização de Ácido Nucleico/métodos , Pinças Ópticas
4.
Nano Lett ; 23(16): 7593-7598, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561947

RESUMO

The use of DNA triplex association is advantageous for the reconfiguration of dynamic DNA nanostructures through pH alteration and can provide environmental control for both structural changes and molecular signaling. The combination of pH-induced triplex-forming oligonucleotide (TFOs) binding with toehold-mediated strand displacement has recently garnered significant attention in the field of structural DNA nanotechnology. While most previous studies use single-stranded DNA to displace or replace TFOs within the triplex, here we demonstrate that pH alteration allows a DNA duplex, with a toehold assistance, to displace TFOs from the components of another DNA duplex. We examined the dependence of this process on toehold length and show that the pH changes allow for cyclic oscillations between two molecular formations. We implemented the duplex/triplex design onto the surface of 2D DNA origami in the form outlining binary digits 0 or 1 and verified the oscillatory conformational changes between the two formations with atomic force microscopy.


Assuntos
DNA , Nanoestruturas , DNA/química , Oligonucleotídeos/química , DNA de Cadeia Simples , Microscopia de Força Atômica , Conformação de Ácido Nucleico
5.
J Am Chem Soc ; 145(19): 10475-10479, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134185

RESUMO

Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química , Nanotecnologia , Motivos de Nucleotídeos , Engenharia , Conformação de Ácido Nucleico
6.
J Am Chem Soc ; 145(8): 4853-4859, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791277

RESUMO

Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.


Assuntos
DNA , DNA/química , Cristalografia por Raios X , Conformação de Ácido Nucleico
7.
J Am Chem Soc ; 145(4): 2455-2460, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657115

RESUMO

Mesojunctions were introduced as a basic type of crossover configuration in the early development of structural DNA nanotechnology. However, the investigations of self-assembly from multiple mesojunction complexes have been overlooked in comparison to their counterparts based on regular junctions. In this work, we designed standardized component strands for the construction of complex mesojunction lattices. Three typical mesojunction configurations with three and four arms were showcased in the self-assembly of 1-, 2-, and 3-dimensional lattices constructed from both a scaffold-free tiling approach and a scaffolded origami approach.


Assuntos
Nanoestruturas , Nanoestruturas/química , Conformação de Ácido Nucleico , DNA/química , Nanotecnologia/métodos
8.
J Am Chem Soc ; 145(6): 3599-3605, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731121

RESUMO

Reconfigurable structures engineered through DNA hybridization and self-assembly offer both structural and dynamic applications in nanotechnology. Here, we have demonstrated that strand displacement of triplex-forming oligonucleotides (TFOs) can be translated to a robust macroscopic DNA crystal by coloring the crystals with covalently attached fluorescent dyes. We show that three different types of triplex strand displacement are feasible within the DNA crystals and the bound TFOs can be removed and/or replaced by (a) changing the pH from 5 to 7, (b) the addition of the Watson-Crick complement to a TFO containing a short toehold, and (c) the addition of a longer TFO that uses the duplex edge as a toehold. We have also proved by X-ray diffraction that the structure of the crystals remains as designed in the presence of the TFOs.


Assuntos
DNA , Oligonucleotídeos , DNA/química , Oligonucleotídeos/química , Hibridização de Ácido Nucleico , Corantes Fluorescentes , Conformação de Ácido Nucleico
9.
J Am Chem Soc ; 145(32): 17945-17953, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530628

RESUMO

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.


Assuntos
Mercúrio , Prata , Pareamento de Bases , Prata/química , DNA/química , Mercúrio/química
10.
Small ; 19(12): e2206511, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585389

RESUMO

The successful self-assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally-designed, nanoscale components. This 3D DNA tile owes its "tensegrity" nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter-junction regions, corresponding to two-thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed ( Z + 2 / 3 ) \[\left( {Z{\bm{ + }}2{\bf /}3} \right)\] turn inter-junction segments, yielding right-handed, antiparallel, "J1" junctions. Here a minimal DNA triangle motif consisting of 3-bp inter-junction segments, or one-third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left-handed tertiary structure mediated by a locally-parallel Holliday junction-the "L1" junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter-junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under-explored class of self-assembling, chiral nanomaterials for topological processes in biological systems.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Pareamento de Bases
11.
Small ; 19(3): e2205830, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408817

RESUMO

The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well-studied 3D tile is the DNA tensegrity triangle, which is known to self-assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson-Crick (WC) base pairs. In this study, 24-bp edges are substituted into a previously 21-bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self-assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond-like tessellation patterns. Reverting this motif to sticky ends with Watson-Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet-unexplored arrangements of crystalline soft matter.


Assuntos
DNA , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases
12.
Angew Chem Int Ed Engl ; 62(6): e202213451, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520622

RESUMO

Non-canonical interactions in DNA remain under-explored in DNA nanotechnology. Recently, many structures with non-canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non-canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross-talking between Watson-Crick and non-canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long-range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non-canonical motifs and their topological self-assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.


Assuntos
DNA , Nanotecnologia , Conformação de Ácido Nucleico , Cristalografia por Raios X , DNA/química , Cristalização
13.
Biophys J ; 121(24): 4759-4765, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36004779

RESUMO

In this perspective, we provide a summary of recent developments in self-assembling three-dimensional (3D) DNA crystals. Starting from the inception of this subfield, we describe the various advancements in structure that have led to an increase in the diversity of macromolecular crystal motifs formed through self-assembly, and we further comment on the future directions of the field, which exploit noncanonical base pairing interactions beyond Watson-Crick. We then survey the current applications of self-assembling 3D DNA crystals in reversibly active nanodevices and materials engineering and provide an outlook on the direction researchers are taking these structures. Finally, we compare 3D DNA crystals with DNA origami and suggest how these distinct subfields might work together to enhance biomolecule structure solution, nanotechnological motifs, and their applications.


Assuntos
DNA , Nanotecnologia , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases
14.
J Am Chem Soc ; 144(19): 8741-8745, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507317

RESUMO

This manuscript introduces geometry as a means to program the tile-based DNA self-assembly in two and three dimensions. This strategy complements the sequence-focused programmable assembly. DNA crystal assembly critically relies on intermotif, sticky-end cohesion, which requires complementarity not only in sequence but also in geometry. For DNA motifs to assemble into crystals, they must be associated with each other in the proper geometry and orientation to ensure that geometric hindrance does not prevent sticky ends from associating. For DNA motifs with exactly the same pair of sticky-end sequences, by adjusting the length (thus, helical twisting phase) of the motif branches, it is possible to program the assembly of these distinct motifs to either mix with one another, to self-sort and consequently separate from one another, or to be alternatingly arranged. We demonstrate the ability to program homogeneous crystals, DNA "alloy" crystals, and definable grain boundaries through self-assembly. We believe that the integration of this strategy and conventional sequence-focused assembly strategy could further expand the programming versatility of DNA self-assembly.


Assuntos
DNA , DNA/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
15.
Proc Natl Acad Sci U S A ; 116(6): 1952-1957, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674667

RESUMO

Self-replication and exponential growth are ubiquitous in nature but until recently there were few examples of artificial self-replication. Often replication is a templated process where a parent produces a single offspring, doubling the population in each generation. Many species however produce more than one offspring at a time, enabling faster population growth and higher probability of species perpetuation. We have made a system of cross-shaped origami tiles that yields a number of offspring, four to eight or more, depending on the concentration of monomer units to be assembled. The parent dimer template serves as a seed to crystallize a one-dimensional crystal, a ladder. The ladder rungs are then UV-cross-linked and the offspring are then released by heating, to yield a litter of autonomous daughters. In the complement study, we also optimize the growth conditions to speed up the process and yield a 103 increase in the growth rate for the single-offspring replication system. Self-replication and exponential growth of autonomous motifs is useful for fundamental studies of selection and evolution as well as for materials design, fabrication, and directed evolution. Methods that increase the growth rate, the primary evolutionary drive, not only speed up experiments but provide additional mechanisms for evolving materials toward desired functionalities.


Assuntos
Replicação do DNA , DNA/química , Fenômenos Biomecânicos , Cristalização , DNA de Cadeia Simples , Modelos Biológicos , Nanoestruturas
16.
Angew Chem Int Ed Engl ; 61(5): e202115155, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34847266

RESUMO

A quasi-one-dimensional organic semiconductor, hepta(p-phenylene vinylene) (HPV), was incorporated into a DNA tensegrity triangle motif using a covalent strategy. 3D arrays were self-assembled from an HPV-DNA pseudo-rhombohedron edge by rational design and characterized by X-ray diffraction. Templated by the DNA motif, HPV molecules exist as single-molecule fluorescence emitters at the concentration of 8 mM within the crystal lattice. The anisotropic fluorescence emission from HPV-DNA crystals indicates HPV molecules are well aligned in the macroscopic 3D DNA lattices. Sophisticated nanodevices and functional materials constructed from DNA can be developed from this strategy by addressing functional components with molecular accuracy.

17.
Chem Rev ; 119(10): 6273-6289, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29911864

RESUMO

Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX2, has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.


Assuntos
DNA/química , Nanotecnologia/métodos , Modelos Moleculares , Nanotecnologia/instrumentação , Conformação de Ácido Nucleico
18.
Proc Natl Acad Sci U S A ; 115(37): 9086-9091, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150392

RESUMO

Nature self-assembles functional materials by programming flexible linear arrangements of molecules and then folding them to make 2D and 3D objects. To understand and emulate this process, we have made emulsion droplets with specific recognition and controlled valence. Uniquely monovalent droplets form dimers: divalent lead to polymer-like chains, trivalent allow for branching, and programmed mixtures of different valences enable a variety of designed architectures and the ability to subsequently close and open structures. Our functional building blocks are a hybrid of micrometer-scale emulsion droplets and nanoscale DNA origami technologies. Functional DNA origami rafts are first added to droplets and then herded into a patch using specifically designated "shepherding" rafts. Additional patches with the same or different specificities can be formed on the same droplet, programming multiflavored, multivalence droplets. The mobile patch can bind to a patch on another droplet containing complementary functional rafts, leading to primary structure formation. Further binding of nonneighbor droplets can produce secondary structures, a third step in hierarchical self-assembly. The use of mobile patches rather than uniform DNA coverage has the advantage of valence control at the expense of slow kinetics. Droplets with controlled flavors and valences enable a host of different material and device architectures.

19.
Angew Chem Int Ed Engl ; 60(49): 25781-25786, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596325

RESUMO

Branched DNA motifs serve as the basic construction elements for all synthetic DNA nanostructures. However, precise control of branching orientation remains a key challenge to further heighten the overall structural order. In this study, we use two strategies to control the branching orientation. The first one is based on immobile Holliday junctions which employ specific nucleotide sequences at the branch points which dictate their orientation. The second strategy is to use angle-enforcing struts to fix the branching orientation with flexible spacers at the branch points. We have also demonstrated that the branching orientation control can be achieved dynamically, either by canonical Watson-Crick base pairing or non-canonical nucleobase interactions (e.g., i-motif and G-quadruplex). With precise angle control and feedback from the chemical environment, these results will enable novel DNA nanomechanical sensing devices, and precisely-ordered three-dimensional architectures.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Motivos de Nucleotídeos
20.
Soft Matter ; 16(18): 4358-4365, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32364206

RESUMO

Colloidal synthesis is a powerful bottom-up approach for programmed self-assembly which holds promise for both research and industry. While diverse, each synthetic process is typically restricted to a specific chemistry. Many applications however require composite materials, whereas a chemical equilibrium can typically only match one material but not the other. Here, a scalable general approach is presented, alleviating the dependency on a specific chemical reaction, by resorting to a mechanical equilibrium; an isopycnic density-gradient-step is tailored to form clusters with prescribed composition. Valence control is demonstrated, making dimers, trimers, and tetramers with purity as high as 96%. The measured kinetics shows a scaleable throughput. The density gradient step plays a dual role of both filtering out undesired products and concentrating the target structures. The "Mix-and-Match" approach is general, and applies to a broad range of colloidal matter: diverse material compositions (plastics, glasses, and emulsions); a range of colloidal interactions (van der Waals, Coulomb, and DNA hybridization); and a spectrum of sizes (nanoscale to multiple micrometers). Finally, the strength of the method is displayed by producing a monodisperse suspension from a highly polydisperse emulsion. The ability to combine colloids into architectures of hybrid materials has applications in pharmaceuticals, cosmetics, and photonics.


Assuntos
Técnicas de Química Sintética/métodos , Coloides/química , DNA , Emulsões , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA