Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 123: 103840, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32658782

RESUMO

BACKGROUND: Unoptimized protocols, including a miscentered position, might affect the outcome of diagnostic in CT examinations. In this study, we investigate the effects of miscentering position during CT head examination on the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image. RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p < 0.05) at +20 cm for MCS (435.70 ± 9.39) and -20 cm for MCI (438.91 ± 10.94) from the isocenter. Similarly, significant reductions (p < 0.05) were also noted for SNR for MCS (at +20 cm) and MCI (at -20 cm). For the low dose protocol, both CNR and SNR were significantly reduced (p < 0.05) at table heights of +20 and -20 cm from the isocenter. CONCLUSION: Miscentering is proven to significantly affect the image quality in both low and standard dose protocols for head CT procedure. This study implies that accurate patient centering is one of the approaches that can improve CT optimization practice.


Assuntos
Cabeça , Tomografia Computadorizada por Raios X , Meios de Contraste , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Razão Sinal-Ruído
2.
Quant Imaging Med Surg ; 3(5): 256-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24273743

RESUMO

The study aimed to investigate the effects of different tube potentials and concentrations of iodinated contrast media (CM) on the image enhancement, contrast-to-noise ratio (CNR) and noise in micro-computed tomography (µCT) images. A phantom containing of five polyethylene tube was filled with 2 mL of deionized water and iodinated CM (Omnipaque 300 mgI/mL) at four different concentrations: 5, 10, 15, and 20 mol/L, respectively. The phantom was scanned with a µCT machine (SkyScan 1176) using various tube potentials: 40, 50, 60, 70, 80, and 90 kVp, a fixed tube current; 100 µA, and filtration of 0.2 mm aluminum (Al). The percentage difference of image enhancement, CNR and noise of all images, acquired at different kVps and concentrations, were calculated. The image enhancement, CNR and noise curves with respect to tube potential and concentration were plotted and analysed. The highest image enhancement was found at the lowest tube potential of 40 kVp. At this kVp setting, the percentage difference of image enhancement [Hounsfield Unit (HU) of 20 mol/L iodine concentration over HU of deionized water] was 43%. By increasing the tube potential, it resulted with the reduction of HU, where only 17.5% different were noticed for 90 kVp. Across all iodine concentrations (5-20 M), CNR peaked at 80 kVp and then these values showed a slight decreasing pattern, which might be due insufficient tube current compensation. The percentage difference of image noise obtained at 40 and 90 kVp was 72.4%. Lower tube potential setting results in higher image enhancement (HU) in conjunction with increasing concentration of iodinated CM. Overall, the tube potential increment will substantially improve CNR and reduce image noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA