Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(5): 1776-1785, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35522178

RESUMO

In this study, we examined the effects of Heat Shock Protein 90 (HSP90) on adipocyte proliferation and differentiation in chickens. To achieve this, we constructed RNA interference (RNAi) vectors to target HSP90 and transfected the vectors into primary adipocytes. After transfection, oil red O staining was performed to determine the status of triglyceride accumulation in the cells, whereas the CCK-8 cell kit and 5-Ethynyl-2'-Deoxyuridine (EdU) assays were used to determine cell proliferation. Thereafter, the mRNA and protein expression levels of PPARγ, FAS, SREBP-1c, and HSP90 were determined, and the results showed that after the interference of HSP90, the mRNA and protein expression levels of HSP90 in the chicken adipocytes decreased significantly compared to the control and blank groups (p < 0.05). The decreased mRNA and protein expression of PPARγ, FAS, and SREBP-1c was related to adipocyte differentiation (p < 0.05). However, HSP90 interference had no effect on adipocyte proliferation (p > 0.05). Taken together, the results of this study showed that HSP90 influenced the expression of PPARγ and adipose-differentiation-related genes, thereby regulating triglyceride accumulation and adipocyte differentiation in chickens.


Assuntos
Galinhas , PPAR gama , Animais , Galinhas/genética , Galinhas/metabolismo , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Diferenciação Celular/fisiologia , RNA Mensageiro/genética , Proliferação de Células/genética , Triglicerídeos/metabolismo , Proteínas de Choque Térmico/metabolismo
2.
Anim Biotechnol ; 34(1): 77-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34138682

RESUMO

This study was conducted to examine the influence of uni and bilateral castration on growth performance and lipid metabolism in yellow cattle. Eighteen 9-month-old healthy yellow cattle (average body weight 184.03 ± 4.09 kg) were selected and divided into three groups: The uncastrated cattle (C), half castrated cattle (HC) and full castrated cattle (FC). The results showed that the growth rate of FC group was significantly reduced as compared to HC and C group, while the feed to gain ratio exhibited an opposite trend. The concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein (HDL) were increased significantly in FC group from day 60 to the end of the trial compared to HC and control groups. Serum testosterone concentration of FC group cattle was decreased from day 60 to 120 d of the trial compared to HC and control groups. The concentration of the lauric acid in FC cattle was significantly increased from the HC and control groups. In the FC group, the acetyl-CoA carboxylase alpha (ACACA), ACC and fatty acid synthase (FAS) gene expression levels were significantly higher compared to control and HC groups. Our results of this study suggest that bilateral castration increased the lipid metabolism and fatty acid composition compared to unilateral castrated and un-castrated cattle.HighlightsBilateral castration alters the growth performance in yellow cattle.Bilateral castration alters hormones levels and lipid metabolites levels in serum.Bilateral castration improves the lipid metabolism and fatty acid profile.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Bovinos , Animais , Metabolismo dos Lipídeos/genética , Castração , Triglicerídeos , Peso Corporal
3.
Anim Biotechnol ; 33(6): 1150-1160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33530818

RESUMO

This study aimed to investigate the effects of active dry yeast (ADY) on growth performance, rumen microbial composition and carcass performance of beef cattle. Thirty-two finishing beef cattle (yak ♂ × cattle-yaks ♀), with an average body weight of 110 ± 12.85 kg, were randomly assigned to one of four treatments: the low plane of nutrition group (control), low plane of nutrition group + ADY 2 g/head daily (ADY2), low plane of nutrition group + ADY 4 g/head daily (ADY4) and the high plane of nutrition group (HPN). Supplementation of ADY increased average daily gain compared to the control group. The neutral detergent fiber and acid detergent fiber apparent digestibility in HPN group was greater than that in control group. The propionic acid concentration in the rumen in ADY2, ADY4, and HPN groups was greater than that in control group. The Simpson and Shannon indexes in control and HPN groups were higher than that in ADY4 group. At the phylum level, the relative abundance of Firmicutes in the HPN group was higher than that in ADY4 group. The relative abundance of Ruminococcaceae UCG-002 in ADY4 group was higher than that in control and HPN groups. In conclusion, supplementation ADY 4 g/head daily shift the rumen microbial composition of beef cattle fed low plane of nutrition to a more similar composition with cattle fed with HPN diet and produce the similar carcass weight with HPN diet.HighlightsThe ADY can improve the utilization of nitrogen and decrease the negative impact on the environment in beef cattle.Cattle fed low plane of nutrition diet supplemented with ADY 4 g/head daily increased growth performance.Supplementation ADY 4 g/head daily in low plane of nutrition diet might be produced comparable carcass weight to HPN diet.


Assuntos
Microbiota , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Saccharomyces cerevisiae , Fermentação , Ração Animal/análise , Detergentes/metabolismo , Dieta/veterinária , Suplementos Nutricionais
4.
J Therm Biol ; 97: 102874, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863438

RESUMO

With the globe warming, heat stress (HS) has frequently affected animal production. Selenium (Se) is an essential trace element for animals and exerts most of its biological functions through selenoproteins. We previously demonstrated that the damage to C2C12 cells by HS accompanied with the response of selenoprotein encoding genes and proteins. The objective of this study was to investigate whether selenium supplementation (sodium selenite, SS and selenomethionine, SeMet) could alleviate the negative effect of heat stress on the differentiation of C2C12 cells, and interpret the potential corresponding selenoproteins response. The differentiated cells were cultured for 4 and 8 days under different condition: at 37 °C, 41.5 °C and 41.5 °C with 0.5 µmol Se/L SS or SeMet, and the HSP70, cell apoptosis, selenoproteins and cell differentiation-related gene or protein were detected. The result showed that HS up-regulated (P < 0.05) mRNA and protein levels of HSP70 and gene expression of AMPKα1 and AMPKα2, and down-regulated (P < 0.05) mRNA or protein levels of MYOGENIN and MYOD. Meanwhile, up to 15 and 17 selenoprotein genes expression were significantly changed response to 4-and 8-days HS challenge, respectively. Relative to the HS group, SS and SeMet supplementation down-regulated the mRNA and protein abundance of HSP70 to different degrees, and partly recovered (P < 0.05) the mRNA or protein abundance of MYOGENIN and MYOD at 4th and 8th day. Especially, 16 and 10 selenoprotein genes expression in cells affected by HS were altered by SS and SeMet supplementation, respectively. Both SS and SeMet supplementation modestly increased (P < 0.05) protein levels of GPX1 and SELENON in cells under HS. In summary, Se supplementation partly alleviated the negative impact of HS on myogenic differentiation of C2C12 cells and the process may associate with the alternation of selenoprotein expression pattern, and SeMet exhibits better effect than SS.


Assuntos
Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta/efeitos adversos , Substâncias Protetoras/farmacologia , Selenometionina/farmacologia , Selenito de Sódio/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Genoma , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo
5.
Anim Biosci ; 37(1): 74-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946435

RESUMO

OBJECTIVE: Mitragyna speciosa Korth is traditionally used in Thailand. They have a high level of antioxidant capacities and bioactive compounds, the potential to modulate rumen fermentation and decrease methane production. The aim of the study was to investigate the different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation on nutrient degradability, rumen ecology, microbial dynamics, and methane production in an in vitro study. METHODS: A completely randomized design was used to assign the experimental treatments, MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. RESULTS: The addition of MMLE significantly increased in vitro dry matter degradability both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved with MMLE supplementation. The MMLE had the greatest propionate and total volatile fatty acid production when added with 6% of total DM substrate, while decreased the methane production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with MMLE feeding. CONCLUSION: The results indicated that MMLE could be a potential alternative plant-based bioactive compound supplement to be used as ruminant feed additives.

6.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923734

RESUMO

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Assuntos
Ração Animal , Betaína , Creatina , Dieta , Suplementos Nutricionais , Digestão , Glicina , Animais , Suplementos Nutricionais/análise , Betaína/metabolismo , Betaína/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Masculino , Digestão/efeitos dos fármacos , Creatina/metabolismo , Glicina/análogos & derivados , Glicina/administração & dosagem , Glicina/metabolismo , Ovinos/fisiologia , Ovinos/metabolismo , Carneiro Doméstico/fisiologia , Carneiro Doméstico/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Nutrientes/metabolismo
7.
Animals (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672391

RESUMO

Growth-retarded yaks are of a high proportion on the Tibetan plateau and reduce the economic income of farmers. Our previous studies discovered a maldevelopment in the ruminal epithelium of growth-retarded yaks, but the molecular mechanisms are still unclear. This study aimed to reveal how the proteomic profile in the ruminal epithelium contributed to the growth retardation of yaks. The proteome of the ruminal epithelium was detected using a high-resolution mass spectrometer. There were 52 proteins significantly differently expressed between the ruminal epithelium of growth-retarded yaks and growth-normal yaks, with 32 downregulated and 20 upregulated in growth-retarded yaks. Functional analysis showed the differently expressed proteins involved in the synthesis and degradation of ketone bodies (p = 0.012), propanoate metabolism (p = 0.018), pyruvate metabolism (p = 0.020), and mineral absorption (p = 0.024). The protein expressions of SLC26A3 and FTH1, enriched in the mineral absorption, were significantly downregulated in growth-retarded yaks. The key enzymes ACAT2 and HMGCS2 enriched in ketone bodies synthesis and key enzyme PCCA enriched in propanoate metabolism had lower protein expressions in the ruminal epithelium of growth-retarded yaks. The ATP concentration and relative mitochondrial DNA copy number in the ruminal epithelium of growth-normal yaks were dramatically higher than those of growth-retarded yaks (p < 0.05). The activities of citrate synthase (CS), the α-ketoglutarate dehydrogenase complex (α-KGDHC), isocitrate dehydrogenase (ICD) in the tricarboxylic acid cycle (TCA), and the mitochondrial respiratory chain complex (MRCC) were significantly decreased in ruminal epithelium of growth-retarded yaks compared to growth-normal yaks (p < 0.05). The mRNA expressions of COQ9, COX4, and LDHA, which are the encoding genes in MRCC I, IV and anaerobic respiration, were also significantly decreased in the ruminal epithelium of growth-retarded yaks (p < 0.05). Correlation analysis revealed that the average daily gain (ADG) was significantly positively correlated to the relative mitochondrial DNA copy number (p < 0.01, r = 0.772) and ATP concentration (p < 0.01, r = 0.728) in the ruminal epithelium, respectively. The ruminal weight was positively correlated to the relative mitochondrial DNA copy number (p < 0.05, r = 0.631) and ATP concentration in ruminal epithelium (p < 0.01, r = 0.957), respectively. The ruminal papillae had a significant positive correlation with ATP concentration in ruminal epithelium (p < 0.01, r = 0.770). These results suggested that growth-retarded yaks had a lower VFA metabolism, ketone bodies synthesis, ion absorption, and ATP synthesis in the ruminal epithelium; it also indicated that the growth retardation of yaks is related to the obstruction of cellular ATP synthesis in rumen epithelial cells.

8.
Microbiome ; 12(1): 48, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454496

RESUMO

BACKGROUND: Long-distance transportation, a frequent practice in the cattle industry, stresses calves and results in morbidity, mortality, and growth suppression, leading to welfare concerns and economic losses. Alkaline mineral water (AMW) is an electrolyte additive containing multiple mineral elements and shows stress-mitigating effects on humans and bovines. RESULTS: Here, we monitored the respiratory health status and growth performance of 60 Simmental calves subjected to 30 hours of road transportation using a clinical scoring system. Within the three days of commingling before the transportation and 30 days after the transportation, calves in the AMW group (n = 30) were supplied with AMW, while calves in the Control group (n = 29) were not. On three specific days, namely the day before transportation (day -3), the 30th day (day 30), and the 60th day (day 60) after transportation, sets of venous blood, serum, and nasopharyngeal swab samples were collected from 20 calves (10 from each group) for routine blood testing, whole blood transcriptomic sequencing, serology detection, serum untargeted metabolic sequencing, and 16S rRNA gene sequencing. The field data showed that calves in the AMW group displayed lower rectal temperatures (38.967 ℃ vs. 39.022 ℃; p = 0.004), respiratory scores (0.079 vs. 0.144; p < 0.001), appetite scores (0.024 vs. 0.055; p < 0.001), ocular and ear scores (0.185 vs. 0.338; p < 0.001), nasal discharge scores (0.143 vs. 0.241; p < 0.001), and higher body weight gains (30.870 kg vs. 7.552 kg; p < 0.001). The outcomes of laboratory and high throughput sequencing data revealed that the calves in the AMW group demonstrated higher cellular and humoral immunities, antioxidant capacities, lower inflammatory levels, and intestinal absorption and lipogenesis on days -3 and 60. The nasopharynx 16S rRNA gene microbiome analysis revealed the different composition and structure of the nasopharyngeal microflora in the two groups of calves on day 30. Joint analysis of multi-omics revealed that on days -3 and 30, bile secretion was a shared pathway enriched by differentially expressed genes and metabolites, and there were strong correlations between the differentially expressed metabolites and the main genera in the nasopharynx. CONCLUSIONS: These results suggest that AMW supplementation enhances peripheral immunity, nutrition absorption, and metabolic processes, subsequently affecting the nasopharyngeal microbiota and improving the respiratory health and growth performance of transported calves. This investigation provided a practical approach to mitigate transportation stress and explored its underlying mechanisms, which are beneficial for the development of the livestock industry. Video Abstract.


Assuntos
Multiômica , Nasofaringe , Animais , Bovinos , Antioxidantes , Minerais , RNA Ribossômico 16S/genética
9.
Front Vet Sci ; 10: 1086985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814466

RESUMO

Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.

10.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37549918

RESUMO

Caustic paste disbudding (CPD) is widely utilized for calves, which has been known to result in adverse effects on the calves and ethical concerns related to animal welfare, despite the use of local anesthetics. The administration of meloxicam has been demonstrated to provide benefits in alleviating pain and inflammation in juvenile calves under 9 d old and subjected to CPD. Nonetheless, there is a scarcity of literature documenting the beneficial impact of meloxicam in alleviating pain in calves aged over 9 d that have undergone CPD. Therefore, the objective of this clinical trial was to evaluate the efficacy of administering meloxicam and lidocaine for cornual nerve block together in mitigating the deleterious effects of CPD, as opposed to using lidocaine alone in calves older than 9 d. Thirty Holstein calves, aged between 10 and 21 d, were enrolled and randomly assigned to 1 of 2 treatments: lidocaine alone (Placebo), lidocaine and normal saline treatment before CPD, and lidocaine plus meloxicam, lidocaine and 0.5 mg/kg of meloxicam treatment prior to CPD. The researchers were blind to the treatment of calves to control the subjective error. The occurrences of actions associated with pain, which included head shaking, head rubbing, ear flicking, tail flicking, kicking, and head passing through the fence, were recorded. Physiological performance, including the respiration rate, heart rate, rectal temperature, mechanical nociceptive threshold (MNT), food intake, and daily activity level, was monitored. Hematological conditions were ascertained through the use of routine blood tests and enzyme-linked immunosorbent assay. The generalized linear mixed model was employed to analyze the data. The research findings revealed that applying the CPD procedure significantly elevated the frequencies of tail flicking, head shaking, and kicking, resulted in increases in respiratory rate, heart rate, daily active steps, and food intake and a decrease in MNT, and led to alterations in hematological markers, including platelet counts, mean platelet volume, prostaglandin E2, constitutive nitric oxide synthase, and hydroxyl radical. Considerable benefits, such as lower heart rates, higher food intake, and MNTs, as well as lower levels of white blood cell counts, lymphocyte counts, hemoglobin, mean platelet volume, prostaglandin E2, tumor necrosis factor-α, constitutive nitric oxide synthase, malondialdehyde, and hydroxyl radical, were observed in the calves that received meloxicam treatment in response to CPD. The findings of the study indicate that the co-administration of lidocaine and meloxicam provides obvious benefits in mitigating pain, inflammation, and oxidative stress in calves aged over 9 d and undergoing CPD. This endorses the use of meloxicam during the disbudding and dehorning procedures of calves.


Caustic paste disbudding (CPD) is a widely used practice in the cattle industry, yet there is a shortage of literature on the effects of meloxicam on calves aged 10 to 21 d who have undergone this procedure. In this clinical trial, we conducted a comparative analysis of the pain-related behavioral, physiological, and hematological performance of calves that were administered with either lidocaine plus normal saline (n = 15) or lidocaine plus meloxicam (n = 15) before undergoing disbudding operations. The findings demonstrated that the CPD operation had a significant impact on the pain-related behavior, physiological functions, and serum anti-inflammatory and antioxidative markers of the calves. On the other hand, the administration of meloxicam had notable advantages for the calves by enhancing the physiological and hematological parameters.


Assuntos
Cáusticos , Cornos , Meloxicam , Animais , Bovinos , Cáusticos/efeitos adversos , Dinoprostona/uso terapêutico , Cornos/cirurgia , Radical Hidroxila/uso terapêutico , Inflamação/veterinária , Lidocaína/uso terapêutico , Dor/tratamento farmacológico , Dor/veterinária , Bem-Estar do Animal
11.
PeerJ ; 10: e12826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386429

RESUMO

In pastoral areas and semi-agricultural and semi-pastoral areas of Sichuan, beef cattle breeding mode is mainly dependent on nature to raise livestock. On the one hand, owing to the shortage of forage grass in spring, cows suffer from malnutrition. On the other hand, competition for milk between human and livestock further deepens the malnutrition of newborn calves, and the mortality rate even exceeds 40%, resulting in serious waste of beef cattle source resources. The objective of this study was to investigate the effect of different cultivation methods (calves with and without dam) and age on calves hindgut microbiome. Sixteen healthy calves (Yak ♂ × Pian cattle ♀, with similar birthday 0 ± 2 d and body weight 13.1 ± 1.13 kg), were selected and randomly divided into two groups. The control group was cultivated with heifers, whereas the treatment group was cultivated without heifers and was fed milk replacer during the whole 95 days formal experimental period. Fecal samples were collected on 35, 65 and 95 days of age for high-throughput sequencing. The α-diversity was different between the two groups on day 35; however, the bacterial species richness and diversity was almost not different on day 95. Principal coordinates analysis revealed significant difference between the two groups on all the three time points, and the timepoints of day 65 and 95 were closer and separated from the timepoints of day 35 in calves with dam, whereas the timepoints of day 35 and 65 were closer and separated from day 95 in calves without dam. As time passed, the abundance of Firmicutes increased, while Proteobacteria and Actinobacteria decreased in calves with dam. But in calves without dam, the abundance of Bacteroidetes and Proteobacteria increased on day 65 and then decreased on day 95. In genus level, the relative abundance of Bacteroides decreased in calf with dam while its abundance increased first and then decreased in calf without dam but both resulted in the range of 3.5~4.5%. The relative abundance of Lactobacillus decreased, whereas Ruminococcaceae UCG-005 increased in both groups as the calf grew up. It was concluded that the richness and evenness of the microbial communities was higher in calves with dam than without dam, and a stable gut microbiome in calve with dam is established earlier than calf without dam.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Humanos , Animais , Bovinos , Feminino , Fezes/microbiologia , Leite , Bactérias , Proteobactérias
12.
Anim Biosci ; 35(2): 184-195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34474533

RESUMO

OBJECTIVE: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. METHODS: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. RESULTS: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. CONCLUSION: The results demonstrated dietary ADY improved ruminal fermentation dosedependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

13.
Anim Biosci ; 34(2): 205-212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32106645

RESUMO

OBJECTIVE: The purpose of present study was to investigate the effects of condensed molasses fermentation solubles (CMS) on lactation performance, rumen fermentation, nutrient digestibility, and serum parameters of dairy cows. METHODS: A total of 75 healthy Holstein cows with the same parity (milk production = 35±2.5 kg, body weight = 570±28 kg) were randomly selected and divided into 5 groups. One group served as control group (CON; no CMS), whereas the other 4 groups were CMS1 (accounted for 1% of the diet), CMS2 (2%), CMS3 (3%), and CMS4 (4%). All cows were fed regularly three times each day at 0800, 1600, and 2400 h. Cows received diet and water ad libitum. The experiment lasted for 60 days. RESULTS: Results showed that the dry matter intake, milk yield, and protein of CMS2 were maximum and higher (p<0.05) than CMS4. The ruminal pH was observed less than 6 in CMS3 and CMS4 groups. No noticeable difference of microbial protein was found between CON and CMS2 groups, while the microbial protein in these groups was higher (p<0.05) than CMS3 and CMS4 groups. The apparent digestibility of dry matter, organic matter, and crude protein in CMS2 group was higher (p<0.05) than CMS3 and CMS4 groups. Compared to CMS3 and CMS4 groups, the CMS2 group increased (p<0.05) the serum concentrations of immunoglobulin G and immunoglobulin M on d 60. CONCLUSION: Therefore, it is practicable that CMS substitutes for a part of concentrates in lactating cows' diets, but higher addition of CMS (more than 3% of the diet) could decrease production performance of dairy cows as seen in the present study.

14.
Anim Sci J ; 92(1): e13579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34173303

RESUMO

In ruminants, the ruminal epithelium not only has the function of absorbing nutrients but also is an important tissue to prevent harmful substances in the rumen from entering the blood circulation. Thus, the normal function of ruminal epithelium is critical for ruminants. However, subacute ruminal acidosis induced by high-concentrate diets often damages the barrier function of ruminal epithelium in ruminants. Recently, many studies have shown that dietary supplementation with thiamine is an effective method to alleviate subacute ruminal acidosis. In order to provide theoretical reference for the in-depth study of subacute ruminal acidosis and the application of thiamine in the future, this review introduces the effects of subacute ruminal acidosis on morphological structure, inflammatory response, and tight junction of ruminal epithelium. In addition, this paper summarizes the role of thiamine in maintaining ruminal epithelial function of ruminants during subacute ruminal acidosis challenge.


Assuntos
Acidose , Doenças dos Bovinos , Suplementos Nutricionais , Rúmen , Tiamina , Acidose/prevenção & controle , Acidose/veterinária , Animais , Bovinos , Dieta/veterinária , Epitélio , Concentração de Íons de Hidrogênio
15.
FEMS Microbiol Ecol ; 97(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132351

RESUMO

This study evaluated the effects of glutamine supplementation on nutrient digestibility, immunity, digestive enzyme activity, gut bacterial community and fermentation of growth-retarded yaks. A total of 16 growth-retarded yaks were randomly allocated to two groups: negative control (GRY) and glutamine supplementation group (GLN). Another eight growth-normal yaks were used as a positive control (GNY). Compared with GRY group, the crude protein digestibility was higher in GLN and GNY animals and the neutral detergent fiber digestibility was increased in GLN yaks. The concentrations of serum IgA, IgG, IgM and IL-10, as well as butyrate concentration and cellulase activity in the rumen and cecum were higher in GLN yaks compared to those in GRY animals. Supplementation with glutamine enhanced the chymotrypsin activity and increased the relative abundances of unclassified Peptostreptococcaceae and Romboutsia while decreased the relative abundances of unclassified Chitinophagaceae and Bacteroides in the jejunum and ileum of growth-retarded yaks. In the cecum, the relative abundance of unclassified Muribaculaceae was higher in GLN group than that in GRY group. The findings in this study suggest that the improved nutrient digestibility and immunity of growth-retarded yaks with glutamine supplementation may be through its potential impact on the lower gut host and microbial functions.


Assuntos
Microbioma Gastrointestinal , Glutamina , Ração Animal/análise , Animais , Bovinos , Dieta , Suplementos Nutricionais/análise , Digestão , Fermentação , Glutamina/metabolismo , Nutrientes , Rúmen/metabolismo
16.
Animals (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092847

RESUMO

In the body of an animal, glutamine is a plentiful and very useful amino acid. Glutamine consumption in the body of animals in normal or disease conditions is the same or higher than the glucose. Many in vivo as well as in vitro experiments have been conducted to evaluate the importance of glutamine. Glutamine is a valuable nutrient for the proliferation of the lymphocytes. It also plays a crucial role in the production of cytokines, macrophages, phagocytic, and neutrophil to kill the bacteria. Most of the metabolic organs like the liver, gut, and skeletal muscles control the circulation and availability secretion of glutamine. In catabolic and hypercatabolic conditions, glutamine can turn out to be essential and plays a vital role in metabolism; however, availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. This is why the supplementation of glutamine is commonly used in clinical nutrition and is especially recommended to immune-suppressed persons. Despite this, in catabolic and hyper-catabolic conditions, it is challenging due to the amino acid concentration in plasma/bloodstream and glutamine should be provided via either the oral, enteral or parenteral route. However, the effect of glutamine as an immune-based supplement has been previously recognized as many research studies conducted in vivo and in-vitro evaluated the beneficial effects of glutamine. Hence, the present study delivers a combined review of glutamine metabolism in essential organs of the cell immune system. In this review, we have also reviewed the metabolism and action of glutamine and crucial problems due to glutamine supplementation in catabolic conditions.

17.
Animals (Basel) ; 10(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272611

RESUMO

The aim of the current research was to investigate the effects of betaine (Bet) supplementation on the production performance, rumen fermentation, digestibility, and serum indexes of dairy cows. Thirty healthy Holstein cows with the same parity (milk production = 22 ± 2.5 kg) were randomly selected and divided into three groups. One group served as a control group (CON; no betaine); the other two groups were Bet1 (15 g/d per cow) and Bet2 (30 g/d per cow). All cows were fed regularly three times a day at 06:00, 14:00, and 22:00 h. Cows received the formulate diet, and water was provided ad libitum. The experiment lasted for 60 days during the summer season. Results showed that the dry matter intake, milk protein, and fat of Bet1 cows was significantly higher (p < 0.05) than that in other groups. The content of volatile fatty acid (VFA) in Bet1 was significantly higher (p < 0.05) than CON. Consistent with VFA, a similar trend was found in acetate, while propionate exhibited an opposite trend. Compared to other groups, the microbial protein (MCP) concentrations of Bet1 increased (p < 0.05). The apparent digestibility of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of Bet1 was significantly higher (p < 0.05) than CON. The serum concentration of total antioxygenic capacity (T-AOC) in Bet1 and Bet2 was significantly increased (p < 0.05). Furthermore, the contents of malonaldehyde (MDA) and superoxide dismutase (SOD) in Bet2 were higher (p < 0.05) than that in other groups. Compared to CON and Bet2, Bet1 significantly increased (p < 0.05) the serum concentrations of glucose. Therefore, it is practicable to feed betaine to lactating cows to improve their performance in heat stress.

18.
Animals (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443450

RESUMO

The current study was performed to examine the relationship between the true digestibility of calcium (TDC) in the diet and bacterial community structure in the gastrointestinal tract (GIT) of goats. Twenty-six Nubian healthy female goats were selected as experimental animals, and their TDC was determined using metabolic experiments. Eight goats were grouped into the high digestibility of Calcium (HC) phenotype, and another eight were grouped into the low digestibility of Calcium (LC) phenotype. Their bacterial 16S rRNA gene amplicons from the rumen, abomasum, jejunum, cecum, and colon contents were sequenced using next-generation high-throughput sequencing technology. In the rumen, 239 genera belonging to 23 phyla, 319 genera belonging to 30 phyla in the abomasum, 248 genera belonging to 36 phyla in the jejunum, 248 genera belonging to 25 phyla in the colon and 246 genera belonging to 23 phyla in the cecum were detected. In addition, there was a significant correlation between the TDC and the relative abundance of Candidatus_Saccharimonas, Christensenellaceae_R-7_group, Mogibacterium, Prevotella_1, Prevotella_UCG_004, Ruminococcus_2, Saccharibacteria in the rumen, Eubacterium_coprostanoligens_group, Lachnospiraceae_ND3007_group, Lachnospiraceae_NK3A20_group, p-1088-a5_gut_group, and Planctomycetes in the abomasum, Butyrivibrio in the cecum, and Fibrobacter in the cecum were observed. This study suggests an association of GIT microbial communities as a factor influencing TDC in goats.

19.
PLoS One ; 15(5): e0225018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442173

RESUMO

The present research was conducted to evaluate the connection between the true digestibility of Phosphorus (TDP) in diet and bacterial community structure in the gastrointestinal tract (GIT) of goats. Twenty-eight Nubian goats were chosen and metabolic experiment was conducted to analyze TDP of research animals. Eight goats were grouped into the high digestibility of phosphorus (HP) phenotype, and another 8 were grouped into the low digestibility of phosphorus (LP) phenotype. And from the rumen, abomasum, jejunim, cecum and colon content of the goats, bacterial 16S rRNA gene amplicons were sequenced. In the rumen 239 genera belonging to 23 phyla, in abomasum 319 genera belonging to 30 phyla, in jejunum 248 genera belonging to 36 phyla, in colon 248 genera belonging to 25 phyla and in cecum 246 genera belonging to 23 phyla were noticed. In addition, there was a significant correlation between the TDP and the abundance of Ruminococcaceae_UCG-010, Ruminococcus_2, Ruminococcaceae_UCG-014, Selenomonas_1 and Prevotella in the rumen, Lachnospiraceae_ND3007_group, Saccharofermentans, Ruminococcus_1, Ruminococcaceae_UCG-014, Lachnospiraceae_XPB1014_group and Desulfovibrio in the abomasum, Prevotella, Clostridium_sensu_stricto_1, Fibrobacter, Desulfovibrio and Ruminococcus_2 in the jejunum, Ruminococcaceae_UCG-014 in the colon, and Desulfovibrio in the cecum. Present research trial recommended that the community of gastrointestinal microbiota is a factor affecting TDP in goats.


Assuntos
Bactérias/metabolismo , Digestão , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Cabras/metabolismo , Cabras/microbiologia , Fósforo na Dieta/metabolismo , Estômago de Ruminante/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Dieta/veterinária , RNA Ribossômico 16S/genética
20.
J Anim Sci Biotechnol ; 11: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832076

RESUMO

BACKGROUND: This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH4) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). RESULTS: The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha. The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha, and Isotricha genus and SGMT clade methanogens were positively correlated with CH4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH4 emission. CONCLUSIONS: These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA