Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
IUBMB Life ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440959

RESUMO

Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.

2.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280562

RESUMO

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiência de Vitamina D , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia , Estudos Transversais , Vitamina D/uso terapêutico , Vitaminas , Suplementos Nutricionais , Estudos Observacionais como Assunto
3.
Anal Biochem ; 685: 115393, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977213

RESUMO

The process of glycation, characterized by the non-enzymatic reaction between sugars and free amino groups on biomolecules, is a key contributor to the development and progression of both microvascular and macrovascular complications associated with diabetes, particularly due to persistent hyperglycemia. This glycation process gives rise to advanced glycation end products (AGEs), which play a central role in the pathophysiology of diabetes complications, including nephropathy. The d-ribose-mediated glycation of fibrinogen plays a central role in the pathogenesis of diabetes nephropathy (DN) and retinopathy (DR) by the generation and accumulation of advanced glycation end products (AGEs). Glycated fibrinogen with d-ribose (Rb-gly-Fb) induces structural changes that trigger an autoimmune response by generating and exposing neoepitopes on fibrinogen molecules. The present research is designed to investigate the prevalence of autoantibodies against Rb-gly-Fb in individuals with type 2 diabetes mellitus (T2DM), DN & DR. Direct binding ELISA was used to test the binding affinity of autoantibodies from patients' sera against Rb-gly-Fb and competitive ELISA was used to confirm the direct binding findings by checking the bindings of isolated IgG against Rb-gly-Fb and its native conformer. In comparison to healthy subjects, 32% of T2DM, 67% of DN and 57.85% of DR patients' samples demonstrated a strong binding affinity towards Rb-gly-Fb. Both native and Rb-gly-Fb binding by healthy subjects (HS) sera were non-significant (p > 0.05). Furthermore, the early, intermediate, and end products of glycation have been assessed through biochemical and physicochemical analysis. The biochemical markers in the patient groups were also significant (p < 0.05) in comparison to the HS group. This study not only establishes the prevalence of autoantibodies against d-ribose glycated fibrinogen in DN but also highlights the potential of glycated fibrinogen as a biomarker for the detection of DN and/or DR. These insights may open new avenues for research into novel therapeutic strategies and the prevention of diabetes-related nephropathy and retinopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Doenças Retinianas , Humanos , Nefropatias Diabéticas/complicações , Autoanticorpos , Ribose , Produtos Finais de Glicação Avançada/metabolismo , Fibrinogênio , Doenças Retinianas/complicações
4.
Semin Cancer Biol ; 83: 543-555, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33276090

RESUMO

The non-enzymatic glycosylation or non-enzymatic covalent modifications (NECMs) or glycation of cellular proteins result in the generation and accumulation of advanced glycation end products (AGEs) that are associated with the epigenetics of cancer. Epigenetic modifications are inheritable changes without alterations in the sequences of DNA. Glycation-mediated epigenetic mechanisms change the accessibility of transcriptional factors to DNA via rearrangement or modification in the chromatin structure and collaborate with gene regulation in the pathogenesis of cancer. Epigenetic mechanisms play a critical role in sustaining the tissue-specific gene expression. Distraction from normal epigenetic mechanism results in alteration of gene function, initiation and progression of cancer, and cellular malignant transformation. Epigenetic modifications on DNA and histones control enzymatic expressions of corresponding metabolic pathways, which in turn influence epigenetic regulation. Glycation of histones due to persistent hyperglycemia results in histone-histone and histone-DNA cross-linking in chromatin by compromising the electrostatic interactions, that affect the dynamic architecture of chromatin. Histone proteins are highly prone to glycation due to their basic nature and long half-lives, but the exact role of histone glycation in the epigenetics of cancer is still in the veil. However, recent studies have suggested the role of histone glycation mediated epigenetic modifications that affect cellular functioning by altering the gene expressions of related metabolic pathways. Moreover, dicarbonyls-induced NECMs of histones perturb the architecture of chromatin and transcription of genes via multiple mechanisms. Contrary to the genetic causes of cancer, a possible reversal of glycation-mediated epigenetic modifications might open a new realm for therapeutic interventions. In this review, we have portrayed a mechanistic link between histone glycation and cancer epigenetics.


Assuntos
Epigênese Genética , Neoplasias , Transformação Celular Neoplásica/genética , Cromatina/genética , Metilação de DNA , Glicosilação , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo
5.
Cell Biochem Funct ; 40(5): 451-472, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35758564

RESUMO

The kinesin family member C1 (KIFC1) is an essential protein that facilitates the bipolar division of neoplastic cells. Inhibiting KIFC1 by small molecules is a lucrative strategy to impede bipolar mitosis leading to the apoptosis of cancerous cells. The research aims to envisage small-molecule inhibitors targeting KIFC1. The Mcule database, a comprehensive online digital platform containing more than five million chemical compounds, was used for structure-based virtual screening (SBVS). Druglikeness filtration sifted 2,293,282 chemical hits that further narrowed down to 49 molecules after toxicity profiling. Finally, 39 compounds that comply with the BOILED-Egg permeation predictive model of the ADME rules were carried forward for multiscoring docking using the AutoDock Vina inbuilt to Mcule drug discovery platform, DockThor and SwissDock tools. The mean of ΔG terms produced by docking tools was computed to find consensus top ligand hits. AZ82 exhibited stronger binding (Consensus ΔG: -7.99 kcal mol-1 ) with KIFC1 among reference inhibitors, for example, CW069 (-7.57 kcal mol-1 ) and SR31527 (-7.01 kcal mol-1 ). Ten ligand hits namely, Mcule-4895338547 (Consensus ΔG: -8.69 kcal mol-1 ), Mcule-7035674888 (-8.42 kcal mol-1 ), Mcule-5531166845 (-8.53 kcal mol-1 ), Mcule-3248415882 (-8.55 kcal mol-1 ), Mcule-291881733 (-8.41 kcal mol-1 ), Mcule-5918624394 (-8.44), Mcule-3470115427 (-8.47), Mcule-3686193135 (-8.18 kcal mol-1 ), Mcule-3955355291 (8.09 kcal mol-1 ) and Mcule-9534899193 (-8.01 kcal mol-1 ) depicted strong binding interactions with KIFC1 in comparison to potential reference inhibitor AZ82. The top four ligands and AZ82 were considered for molecular dynamics simulation of 50 ns duration. Toxicity profiling, physicochemical properties, lipophilicity, solubility, pharmacokinetics, druglikeness, medicinal chemistry attributes, average potential energy, RMSD, RMSF, SASA, ΔGsolv and Rg analyses forecast the ligand mcule-4895338547 as a promising inhibitor of KIFC1.


Assuntos
Cinesinas , Simulação de Dinâmica Molecular , Descoberta de Drogas , Ligantes , Simulação de Acoplamento Molecular
6.
Cell Biochem Funct ; 40(5): 526-534, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35707967

RESUMO

Glycation is vital in terms of its damaging effect on macromolecules resulting in the formation of end products, which are highly reactive and cross-linked irreversible structures, known as advanced glycation end products (AGEs). The continuous accumulation of AGEs is associated with severe diabetes and its associated ailments. Saccharides with their reducing ends can glycate amino acid side chains of proteins, among them glucose is well-known for its potent glycating capability. However, other reducing sugars can be more reactive glycating agents than glucose. The D-ribose is a pentose sugar-containing an active aldehyde group in its open form and is responsible for affecting the biological processes of the cellular system. D-ribose, a key component of many biological molecules, is more reactive than most reducing sugars. Protein glycation by reducing monosaccharides such as D-ribose promotes the accelerated formation of AGEs that could lead to cellular impairments and dysfunctions. Also, under a physiological cellular state, the bioavailability rate of D-ribose is much higher than that of glucose in diabetes, which makes this species much more active in protein glycation as compared with D-glucose. Due to the abnormal level of D-ribose in the biological system, the glycation of proteins with D-ribose needs to be analyzed and addressed carefully. In the present study, human immunoglobulin G (IgG) was isolated and purified via affinity column chromatography. D-ribose at 10 and 100 mM concentrations was used as glycating agent, for 1-12 days of incubation at 37°C. The postglycation changes in IgG molecule were characterized by UV-visible and fluorescence spectroscopy, nitroblue tetrazolium assay, and various other physicochemical analyses for the confirmation of D-ribose mediated IgG glycation.


Assuntos
Produtos Finais de Glicação Avançada , Ribose , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Ribose/química , Ribose/metabolismo
7.
Semin Cancer Biol ; 49: 37-43, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28811077

RESUMO

The receptor for advanced glycation end products (RAGEs) was first illustrated in the year 1992. RAGE is a single-transmembrane and multi-ligand component of the immunoglobulin protein super family. The engagement of RAGE turns out to an establishment of numerous intracellular signalling mechanisms resulting in the progression and perpetuation of many types of cancer including, the pancreatic cancer. The present review primarily focuses on the multi-ligand activation of RAGEs leading to the downstream signalling cascade activation. The kick start of the RAGEs activation leads to the several anomalies and includes multiple types of cancers. The RAGE expression correlates well with the survival of pancreatic cancer cells leading to the myeloid response. RAGEs assist in the tumourogenesis which enhance and thrive to its fullest in the stressed tumour microenvironment. An improved perceptive of its involvement in pancreatic cancer may offer novel targets for tumour supervision and risk measurement.


Assuntos
Neoplasias Pancreáticas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Sobrevivência Celular , Humanos , Inflamação/metabolismo , Ligantes , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Estresse Oxidativo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
8.
Semin Cancer Biol ; 49: 44-55, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28712719

RESUMO

Impaired awareness of glycation biology in cancer initiation and progression is one of the fundamental reasons for its meticulous investigation of the molecules involved in signalling pathway. Glycation of biological macromolecules results in the progression of advanced glycation end-products (AGEs) that proliferates the process of carcinogenesis by activation of transcription factors and release of cytokines. The receptor for advanced glycation end-products (RAGEs) with the binding of its different ligands like; AGEs, HMGB1 and S100 activate the signalling arrays. The activation of downstream signalling pathway ultimately leads to the pathophysiological conditions of diabetes, ageing, neurological disorders and cancers as well as a result of the activation of transcription factors which is discussed in the main body text of this review. However, there might be a likelihood of the positive effect of the HMGB1 and S100 proteins in cancer. Still, some untouched mechanisms might be responsible for the establishment of the function of AGE-RAGE or AGE-sRAGE axis activation that leads to the friend-foe association with the cancers. The levels of RAGE and s-RAGE may be a useful biomarker of ligand-RAGE pathway activation and cancer. Thus, the possibility of providing a potential complement to carcinogenesis is very high which might be an interesting target for therapeutic interventions. This article is an insightful assessment on AGE, RAGE and s-RAGE for its possible role in cancer onset and progression. The novel therapeutic targets for cancer prevention or inhibition are also explained in brief in relation to AGE and RAGE.


Assuntos
Carcinogênese/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Dano ao DNA , Glicosilação , Humanos , Inflamação/metabolismo , Ligantes , Estresse Oxidativo , Transdução de Sinais
9.
Semin Cancer Biol ; 49: 9-19, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113952

RESUMO

Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), ß-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Animais , Glicosilação , Humanos , Inflamação/metabolismo , Masculino , Oxirredução , Fatores de Transcrição/metabolismo
10.
Semin Cancer Biol ; 49: 29-36, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29055529

RESUMO

The combine effect of oxidative and glycative stress predisposed to glycoxidation, and their outcomes that play critical role in lung cancer have been examined in different ways. The therapeutic approaches for lung cancer are still unsatisfactory. We observe some unclear and decisive pathways which might play an important role in targeting lung cancer. The roadmap of signaling pathway includes p38 MAPK, NF-ƙB, TNF-α and AGE-RAGE binding affinity play role in the cell growth, proliferation, apoptosis inhibition and metastasis. The goal of this review is to achieve a new signaling map inside the lung cancer which is mediated by glycoxidative products mainly reactive dicarbonyls and advanced glycation end products (AGEs). Additionally, AGE-RAGE binding critically regulates the suppression and promotion of lung cancer via inhibition and activation of different signaling pathways. Hence, this review suggests the role of oxidation, glycation, and glycoxidation in lung cancer.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Apoptose , Proliferação de Células , Glicosilação , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Oxirredução , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Transdução de Sinais
11.
IUBMB Life ; 70(6): 547-552, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624857

RESUMO

The glycation reaction is the addition of free carbonyl group of reducing sugar to the free amino groups of proteins, lipoproteins and nucleic acids which results in the formation of an Amadori product which may ultimately lead to the generation of advanced glycation products (AGEs). The impact of AGEs on proteins consequently generates free radicals, "a key player" for the pathogenesis of diabetes mellitus. Gel electrophoresis was carried out to see the visual changes taking place as a result of the glycation reaction. In this study, the anti-glycation and anti-diabetic effect of wedelolactone (WED) was seen both in vitro and in vivo. WED reverted various biochemical markers in streptozotocin-induced diabetic rats along-with the improvements in the oxidative stress markers. It also decreased the levels of the glycated serum protein and fasting blood glucose. Broadly, WED not only inhibited glycation in vitro but also proved to be an effective in vivo anti-glycating agent. © 2018 IUBMB Life, 70(6):547-552, 2018.


Assuntos
Antioxidantes/farmacologia , Cumarínicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar
12.
J Clin Lab Anal ; 31(6)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28105689

RESUMO

BACKGROUND: The structural perturbations in DNA molecule may be caused by a break in a strand, a missing base from the backbone, or a chemically changed base. These alterations in DNA that occurs naturally can result from metabolic or hydrolytic processes. DNA damage plays a major role in the mutagenesis, carcinogenesis, aging and various other patho-physiological conditions. DNA damage can be induced through hydrolysis, exposure to reactive oxygen species (ROS) and other reactive carbonyl metabolites including 4-hydroxynonenal (HNE). 4-HNE is an important lipid peroxidation product which has been implicated in the mutagenesis and carcinogenesis processes. METHODS: The present study examines to probe the presence of auto-antibodies against 4-hydroxynonenal damaged DNA (HNE-DNA) in various cancer subjects. In this study, the purified calf thymus DNA was damaged by the action of 4-HNE. The DNA was incubated with 4-HNE for 24 h at 37°C temperature. The binding characteristics of cancer auto-antibodies were assessed by direct binding and competitive inhibition ELISA. RESULTS: DNA modifications produced hyperchromicity in UV spectrum and decreased fluorescence intensity. Cancer sera exhibited enhanced binding with the 4-HNE modified calf thymus DNA as compared to its native conformer. The 4-HNE modified DNA presents unique epitopes which may be one of the factors for the auto-antibody induction in cancer patients. CONCLUSION: The HNE modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients.


Assuntos
Aldeídos/farmacologia , Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , DNA/efeitos dos fármacos , DNA/imunologia , Neoplasias/metabolismo , Animais , Anticorpos Antineoplásicos/metabolismo , Autoanticorpos/metabolismo , DNA/metabolismo , Dano ao DNA , Humanos
13.
IUBMB Life ; 67(10): 746-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26362234

RESUMO

The repertoire of known auto-antigens is limited to a very small proportion of all human proteins, and the reason why only some proteins become auto-antigens is unclear. The 65 kDa isoform of the enzyme glutamic acid decarboxylase (GAD-65) is a major auto-antigen in type I diabetes, and in various neurological diseases. Most patients with type I diabetes (70-80%) have auto-antibodies against GAD-65, which often appear years before clinical onset of the autoimmune diabetes. Thus, the aim of the study is to focus on the immunogenicity of GAD65 and its reactive oxygen species (ROS) conformer in STZ-induced diabetic rats and on human diabetic patients. In the present study, GAD-65 was modified by hydroxyl radical following Fenton's reaction. The modifications in the structure of the GAD-65 are supported by UV-vis and fluorescence spectral studies. Immunogenicity of both native and hydroxyl radical modified GAD-65 (ROS-GAD-65) was studied in experimental rabbits and was confirmed by inducing type I diabetes in experimental male albino rats using streptozotocin (45 mg/kg). We found that ROS-GAD-65 was a better immunogen as compared to the native GAD-65. A considerable high binding to ROS-GAD-65 was observed as compared to native GAD-65 in both the serum antibodies from diabetes animal models and as well as in the serum samples of type I diabetes. Hydrogen peroxide under the exposure of UV light produces hydroxyl radical (·OH) which is most potent oxidant, and could cause protein damage (GAD-65) to the extent of generating neo-epitopes on the molecule, thus making it immunogenic.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/enzimologia , Glutamato Descarboxilase/química , Radical Hidroxila/química , Animais , Autoanticorpos/sangue , Autoantígenos/química , Autoantígenos/imunologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Feminino , Glutamato Descarboxilase/imunologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Masculino , Oxirredução , Coelhos , Ratos
14.
IUBMB Life ; 67(12): 897-913, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26597014

RESUMO

Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs.


Assuntos
Bioquímica/métodos , Produtos Finais de Glicação Avançada/análise , Imuno-Histoquímica/métodos , Animais , Autoanticorpos , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Eletroforese/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Produtos Finais de Glicação Avançada/imunologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Espectrometria de Massas/métodos , Camundongos , Espectrometria de Fluorescência/métodos
16.
Glycobiology ; 24(3): 281-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24347633

RESUMO

Advanced glycation end-products (AGEs) are known to be mutagenic, diabetogenic and vascular disease risk factors. Methylglyoxal (MG) is a dicarbonyl species that reacts with biological macromolecule (proteins, DNA and lipids) to give AGEs. Nonenzymatic glycation of MG with lysine (Lys) in the presence of copper (Cu(2+)) is reported to generate reactive oxygen species (ROS) capable of causing DNA damage. We show that DNA modification in MG-Lys-Cu(2+) system results in the generation of strand breaks, base modification, hyperchromicity and increased fluorescence intensity. Superoxide generation in the MG-Lys system was found to be significantly higher when compared with that in the MG and Lys alone. Moreover, d-penicillamine and pyridoxal phosphate significantly inhibited the formation of glycation products. The presence of a major DNA glycation adduct, N(2)-carboxyethyl-2'-deoxyguanosine (CEdG), was detected by high performance liquid chromatography (HPLC) and confirmed by nuclear magnetic resonance (NMR). As reported earlier, modified DNA (MG-Lys-Cu(2+)-DNA) was highly immunogenic in experimental animals. Furthermore, induced anti-MG-Lys-Cu(2+)-DNA antibodies were effective probe for detecting glycoxidative lesions in human genomic DNA of type I diabetes patients. Our results clearly imply that interaction of MG-Lys and Cu(2+) leads to the formation of AGEs and also the production of potent ROS, capable of causing DNA damage, thereby playing an important role in diabetes mellitus.


Assuntos
Dano ao DNA , DNA/imunologia , Diabetes Mellitus Tipo 1/imunologia , Epitopos/imunologia , Produtos Finais de Glicação Avançada/imunologia , Autoimunidade , DNA/química , DNA/genética , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/imunologia , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Penicilamina/farmacologia , Piridoxal/farmacologia , Aldeído Pirúvico/química , Aldeído Pirúvico/imunologia
17.
Glycobiology ; 24(11): 979-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946787

RESUMO

Glycation is the result of covalent bonding of a free amino group of biological macromolecules with a reducing sugar, which results in the formation of a Schiff base that undergoes rearrangement, dehydration and cyclization to form a more stable Amadori product. The final products of nonenzymatic glycation of biomacromolecules like DNA, proteins and lipids are known as advanced glycation end products (AGEs). AGEs may be generated rapidly or over long times stimulated by distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. Both Schiff base and Amadori glycation products generate free radicals resulting in decline of antioxidant defense mechanisms and can damage cellular organelles and enzymes. This critical review primarily focuses on the mechanistic insight of glycation and the most probable route for the formation of glycation products and their therapeutic interventions. Furthermore, the prevention of glycation reaction using therapeutic drugs such as metformin, pyridoxamine and aminoguanidine (AG) are discussed with special emphasis on the novel concept of the bioconjugation of these drugs like, AG with gold nanoparticles (GNPs). At or above 10 mM concentration, AG is found to be toxic and therefore has serious health concerns, and the study warrants doing this novel bioconjugation of AG with GNPs. This approach might increase the efficacy of the AG at a reduced concentration with low or no toxicity. Using the concept of synthesis of GNPs with abovementioned drugs, it is assumed that toxicity of various drugs which are used at high doses can be minimized more effectively.


Assuntos
Glucose/metabolismo , Ciclização , DNA/química , Proteínas/química , RNA/química
18.
Environ Toxicol ; 29(5): 568-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-22610904

RESUMO

4-Aminobiphenyl (4-ABP), an aromatic amine is a major environmental carcinogen found mainly in cigarette smoke. It has been vastly implicated in mutagenesis and cancer development. In this study, commercially available human placental DNA was exposed to 4-ABP (1.3 mM) in presence of sodium nitroprusside (SNP; 8 mM) at 37°C for 3 h. The 4-ABP + SNP-mediated structural changes in human DNA were studied by ultraviolet, circular dichroism and fluorescence spectroscopy, thermal melting profile, agarose gel electrophoresis, and nuclease S1 digestibility assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Modification was also visualized in agarose gel electrophoresis. Furthermore, nuclease S1 digestibility confirmed the generation of single strand breaks. Rabbits challenged with 4-ABP-SNP-modified human DNA-induced high-titer immunogen-specific antibodies, which showed Cross-reaction with modified/unmodified DNA bases and ss-DNA in competitive inhibition assay. The immunogen specificity of induced antibodies against 4-ABP-SNP-modified human DNA was further confirmed in gel retardation assay. It may be concluded that induction of anti-modified DNA antibodies could be due to perturbation in the DNA structure and its subsequent recognition by immunoregulatory cells as a foreign molecule.


Assuntos
Compostos de Aminobifenil/toxicidade , Carcinógenos Ambientais/toxicidade , Dano ao DNA , DNA/química , Óxido Nítrico/toxicidade , Animais , Anticorpos Antinucleares/sangue , DNA/imunologia , Feminino , Humanos , Coelhos , Fumaça/efeitos adversos , Produtos do Tabaco
19.
Fitoterapia ; 176: 106014, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740346

RESUMO

Nymphaea rubra (N. rubra) flowers are prevalent in subtropical regions for both dietary and traditional medicinal purposes, attributing to their beneficial properties in supporting overall health. This study first time provides descriptions of the antidiabetic and dyslipidemic properties employing STZ induced high fat diet fed diabetic rats and inhibition of α-amylase enzyme activity first by in vitro analyses, followed by a confirmatory in silico study to create a stronger biochemical rationale. Furthermore, in 3 T3-L1 cells, this extract promoted the suppression of adipogenesis. GC-MS investigation of the ethyl acetate fraction of ethanolic extract of N. rubra flowers revealed the presence of marker compounds of N. rubra, Nuciferine, and Apomorphine, which were the focus of molecular docking studies. The acquired concentrations of Nuciferine (22.39%) and 10, 11-dimethoxy-Apomorphine (1.47%) were detected. Together with other alkaloids identified by GC-MS analysis from this extract, mechanistically suggested that it might be caused by the synergistic impact of these bioactive chemicals. Molecular docking has been done to check the binding affinities of various isolated phytochemicals with HPAA, the dose-response effect of 100 mg/kg and 250 mg/kg of flower extract after 30 days showed a significant effect on body weight, food, water intake, serum insulin, FBG, OGTT, lipid profile, glycated haemoglobin, liver and kidney function test. Kidney histopathology results show a significant effect. These findings offer a strong foundation for the potential application of the ethyl acetate fraction of ethanolic extract from Nymphaea rubra flowers and its bioactive constituent in an in vivo system for the treatment and control of diabetes and its associated condition dyslipidemia.


Assuntos
Diabetes Mellitus Experimental , Flores , Hipoglicemiantes , Simulação de Acoplamento Molecular , Nymphaea , Compostos Fitoquímicos , Extratos Vegetais , Ratos Wistar , Animais , Flores/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Camundongos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nymphaea/química , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Estrutura Molecular , Dieta Hiperlipídica
20.
Life (Basel) ; 13(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895368

RESUMO

Methylglyoxal (MG) is a precursor for advanced glycation end-products (AGEs), which have a significant role in diabetes. The present study is designed to probe the immunological response of native and glycated low-density lipoprotein (LDL) in experimental animals. The second part of this study is to probe glycoxidative lesion detection in low-density lipoproteins (LDL) in diabetes subjects with varying disease duration. The neo-epitopes attributed to glycation-induced glycoxidative lesion of LDL in DM patients' plasma were, analyzed by binding of native and MG-modified LDL immunized animal sera antibodies using an immunochemical assay. The plasma purified human LDL glycation with MG, which instigated modification in LDL. Further, the NewZealand-White rabbits were infused with unmodified natural LDL (N-LDL) and MG-glycatedLDL to probe its immunogenicity. The glycoxidative lesion detection in LDL of DM with disease duration (D.D.) of 5-15 years and D.D. > 15 years was found to be significantly higher as compared to normal healthy subjects (NHS) LDL. The findings support the notion that prolonged duration of diabetes can cause structural alteration in LDL protein molecules, rendering them highly immunogenic in nature. The presence of LDL lesions specific to MG-associated glycoxidation would further help in assessing the progression of diabetes mellitus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA