Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Pharmacol Rev ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375048

RESUMO

The oceans are a rich source of a myriad of structurally different and unique natural products that are mainly found in invertebrates with potential applications in different disciplines. Microbial infection and cancer are the leading causes of death worldwide. Discovery of new sources of therapy for microbial infections is an urgent requirement due to the emergence of pathogenic microorganisms that are resistant to existing therapies. Marine bioactives have demonstrated to be promising sources for the discovery and development of novel antimicrobial and anticancer compounds. Several marine compounds are confirmed to have antibacterial effects and most marine-based antifungal compounds are cytotoxic. Numerous antitumor marine natural products, derived mainly from sponges or molluscs, and also bryozoans and cyanobacteria, exhibit potent antimitotic activity. In addition, marine biodiversity offers some possible leads or new drugs to treat human immunodeficiency virus (HIV). A majority of marine derived drugs are currently in clinical trials or under preclinical evaluation. Furthermore, marine-based drugs, approved by the US Food and Drug Administration (FDA) are available in the market. This review summarizes the sources, mechanisms of action and potential utilization of marine natural products such as peptides, alkaloids, polyketides, polyphenols, terpenoids and sterols as antifungal, antibacterial, antiviral, and anticancer compounds. Significance Statement Utilization of marine bioactives as natural health products leads to crucial advancement in providing dietary supplements, nutraceuticals, functional foods and pharmaceuticals. Their myriad of application promotes health and plays a role in disease risk reduction. Therapeutic potential of potent compounds from marine organisms and use of their bioactives have promising medicinal value for preventing ailments and advancing pharmaceutical and nutraceutical industries. Their utilization benefits human health globally and contributes to the conservation of marine ecosystem in a transformative / sustainable approach.

2.
J Sci Food Agric ; 104(9): 5553-5564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38358042

RESUMO

BACKGROUND: Sea buckthorn (Hippophae rhamnoides L.) was introduced into Canada in the early 2000s. This plant bears fruits with high commercial value in other countries due to its premium oil. Nevertheless, sea buckthorn berries are also a rich source of bioactives with nutraceutical potential, especially the variety grown in Newfoundland (Canada), which has not previously been characterized. As such, this study evaluated the composition of polyphenols in sea buckthorn pomace and seeds, as well as their prospective health-promoting effects. RESULTS: Polyphenolic identification by high-performance liquid chromatography-ultraviolet-mass spectrometry-time of flight revealed the presence of 24 compounds in the seeds and 16 compounds in the pomace, including phenolic acids, flavonoids, and tannins, with ellagic acid derivative IV (pomace, 52.13 µg g-1) and (+)-catechin (seeds, 690.8 µg g-1) being the most dominant. Sea buckthorn extracts displayed in vitro antidiabetic and anti-obesity potential by inhibiting α-glucosidase (71.52-99.31%) and pancreatic lipase (15.80-35.61%) enzymes, respectively. The extracts also protected low-density-lipoprotein cholesterol (50.97-89.67%) and supercoiled DNA (35.11-79.84%) from oxidative damage. CONCLUSION: Sea buckthorn berries grown in Canada showed promising health benefits induced by their rich and diverse polyphenolic profile and need to be considered for further commercial expansion as a bioactive-loaded superfruit. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Frutas , Hippophae , Fenóis , Extratos Vegetais , Sementes , Hippophae/química , Frutas/química , Antioxidantes/química , Sementes/química , Extratos Vegetais/química , Fenóis/química , Fenóis/análise , Humanos , Polifenóis/química , Polifenóis/análise , Hipoglicemiantes/química , Flavonoides/análise , Flavonoides/química , América do Norte , Fármacos Antiobesidade/química , Fármacos Antiobesidade/análise , Cromatografia Líquida de Alta Pressão
3.
Crit Rev Food Sci Nutr ; : 1-40, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36908213

RESUMO

Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.

4.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446924

RESUMO

Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.


Assuntos
Cucumaria , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Pepinos-do-Mar/metabolismo , Hidrolisados de Proteína/farmacologia , LDL-Colesterol , Peptidil Dipeptidase A/metabolismo
5.
Crit Rev Food Sci Nutr ; 62(1): 66-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32847401

RESUMO

Edible films and coatings have recently received growing attention in the food packaging sector due to their protective ability from the external environment and biodegradability characteristic. Generally, any layer of biomaterial incorporated into food to prolong its shelf-life and that can be consumed along with the food with or without further peeling is defined as an edible film or coating. These biodegradable films improve mechanical properties, moisture and gas barriers, microbial protection, sensory perception, and the shelf-life of food products. In particular, films obtained from polysaccharides are characterized by better gas barrier properties, whereas proteins are known for their excellent mechanical properties. However, both polysaccharides and proteins show poor water barrier properties in films which can be improved by incorporating lipids as well as combining one or more hydrocolloids (proteins and polysaccharides). Moreover, essential oils (EOs) consist mainly of volatile components obtained from plants, which can be added to the film to improve antimicrobial and antioxidant properties. On the other hand, fishery products are highly perishable due to the combined action of chemical reaction, lipid oxidation, endogenous enzymes, and microbial growth. Cold storage and freezing with or without vacuum packaging are often used to preserve fishery products, but they do not always completely preserve quality. Therefore, this review aims to summarize the components and chemistry of edible films and coatings, and their application to aquatic food for quality preservation. Moreover, deterioration of aquatic food and how these films and coatings can improve antimicrobial, antioxidant, physical, and sensory properties are also discussed.


Assuntos
Filmes Comestíveis , Óleos Voláteis , Alimentos , Embalagem de Alimentos , Conservação de Alimentos
6.
Crit Rev Food Sci Nutr ; 62(23): 6421-6445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33787422

RESUMO

Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.


Assuntos
Manipulação de Alimentos , Compostos Fitoquímicos , Antioxidantes/metabolismo , Dieta , Alimentos , Humanos , Compostos Fitoquímicos/análise
7.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419380

RESUMO

Food products contain bioactive compounds such as phenolic and polyphenolic compounds and vitamins, resulting in a myriad of biological characteristics such as antimicrobial, anticarcinogenic, and antioxidant activities. However, their application is often restricted because of their relatively low solubility and stability in emulsions and oil-based products. Therefore, chemical, enzymatic, or chemoenzymatic lipophilization of these compounds can be achieved by grafting a non-polar moiety onto their polar structures. Among different methods, enzymatic modification is considered environmentally friendly and may require only minor downstream processing and purification steps. In recent years, different systems have been suggested to design the synthetic reaction of these novel products. This review presents the new trends in this area by summarizing the essential enzymatic modifications in the last decade that led to the synthesis of bioactive compounds with attractive antioxidative properties for the food industry by emphasizing on optimization of the reaction conditions to maximize the production yields. Lastly, recent developments regarding characterization, potential applications, emerging research areas, and needs are highlighted.

8.
Mar Drugs ; 20(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005524

RESUMO

Sea cucumbers are considered a luxury food item and used locally in traditional medication due to their impressive nutritional profile and curative effects. Sea cucumbers contain a wide range of bioactive compounds, namely phenolics, polysaccharides, proteins (collagen and peptides), carotenoids, and saponins, demonstrating strong antioxidant and other activities. In particular, phenolic compounds, mainly phenolic acids and flavonoids, are abundant in this marine invertebrate and exhibit antioxidant activity. Protein hydrolysates and peptides obtained from sea cucumbers exhibit antioxidant potential, mainly dependent on the amino acid compositions and sequences as well as molecular weight, displayed for those of ≤20 kDa. Moreover, the antioxidant activity of sea cucumber polysaccharides, including fucosylated chondroitin sulfate and fucan, is a combination of numerous factors and is mostly associated with molecular weight, degree of sulfation, and type of major sugars. However, the activity of these bioactive compounds typically depends on the sea cucumber species, harvesting location, food habit, body part, and processing methods employed. This review summarizes the antioxidant activity of bioactive compounds obtained from sea cucumbers and their by-products for the first time. The mechanism of actions, chemical structures, and factors affecting the antioxidant activity are also discussed, along with the associated health benefits.


Assuntos
Saponinas , Pepinos-do-Mar , Animais , Antioxidantes/farmacologia , Humanos , Invertebrados , Polissacarídeos/química , Saponinas/química , Pepinos-do-Mar/química
9.
Mar Drugs ; 20(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36286434

RESUMO

Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.


Assuntos
Biologia Computacional , Pepinos-do-Mar , Animais , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida , Antioxidantes/farmacologia , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Preparações Farmacêuticas
10.
Molecules ; 27(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956962

RESUMO

Lipids in food are a source of essential fatty acids and also play a crucial role in flavor and off-flavor development. Lipids contribute to food flavor generation due to their degradation to volatile compounds during food processing, heating/cooking, and storage and/or interactions with other constituents developed from the Maillard reaction and Strecker degradation, among others. The degradation of lipids mainly occurs via autoxidation, photooxidation, and enzymatic oxidation, which produce a myriad of volatile compounds. The oxidation of unsaturated fatty acids generates hydroperoxides that then further break down to odor-active volatile secondary lipid oxidation products including aldehydes, alcohols, and ketones. In this contribution, a summary of the most relevant and recent findings on the production of volatile compounds from lipid degradation and Maillard reactions and their interaction has been compiled and discussed. In particular, the effects of processing such as cooking, drying, and fermentation as well as the storage of lipid-based foods on flavor generation are briefly discussed.


Assuntos
Aromatizantes , Lipídeos , Reação de Maillard , Culinária , Odorantes
11.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164266

RESUMO

Acylated derivatives of the dietary phenolic, resveratrol, were prepared via enzymatic and chemical transesterification modification with selected vinyl fatty acids to expand the potential application of resveratrol and its acylated derivatives in functional supplement, cosmetic/skincare, and pharmaceutical fields. The acylation was implemented using eight vinyl fatty acids with varying chain lengths (C2:0-C18:0). Eight monoesters enzymatically prepared, eight diesters and four triesters, chemically prepared, were isolated and purified and identified via MS (mass spectra) or/and NMR (nuclear magnetic resonance). The lipophilicity of resveratrol and its acylated derivatives was calculated using ALOGPS 2.1. Compared with related acylated products, resveratrol itself rendered higher antioxidant efficacy in all the antioxidant assays, namely DPPH, ABTS, FRAP, and ferrous chelation tests. Within various ester derivatives of resveratrol, short-chain fatty acid mono- and di-substituted resveratrols, especially the resveratrol monoacetate/diacetate, exhibited higher antioxidant efficacy in DPPH and ABTS assays than the rest of resveratrol derivatives, but the medium-chain monoesters of resveratrol, including caproate, caprylate, caprate, and laurate, showed a higher metal ion chelation ability compared to other acylated resveratrols. These results imply that resveratrol derivatives may be used in lipidic media as health-beneficial antioxidants.


Assuntos
Antioxidantes/química , Resveratrol/análogos & derivados , Acilação , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Esterificação , Radicais Livres/química , Humanos , Picratos/química , Resveratrol/farmacologia
12.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163892

RESUMO

Jua (juá in Portuguese) is an underexplored fruit from Brazil's northeast. This fruit is rich in antioxidant substances. However, there is a dearth of information about jua's bioactive potential. The present study evaluated two extraction methods (continuous agitation and ultrasound-assisted extraction-UAE) and employed three different solvents (water, ethanol, and acetone) to efficiently recover soluble phenolic compounds. Aqueous extracts obtained by UAE showed the highest total phenolic content (TPC) and antiradical activity. Besides being an eco-friendly procedure, extraction and/or solubility in an aqueous medium is also important for food application. Ellagic acids were the predominant phenolics (80%) found in aqueous jua pulp extract obtained by UAE, as determined by HPLC, while its TPC was 405.8 gallic acid equivalent per gram of fruit. This extract also exhibited a higher scavenging activity towards peroxyl radicals when compared to that of several other fruits from the literature, including grape, strawberry, cranberry, and walnuts, which are known references in terms of antioxidants. This is the first report that demonstrates jua pulp's potential as an alternative source of ellagic acid and other phenolic acids and flavonoids. Therefore, the outcome of this study provides new information that can be useful for functional food and nutraceutical industries.


Assuntos
Antioxidantes , Ziziphus , Antioxidantes/análise , Antioxidantes/farmacologia , Ácido Ascórbico , Brasil , Ácido Elágico , Extratos Vegetais , Polifenóis/análise , Água
13.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163956

RESUMO

The Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection. The grain yield was decreased by up to 25 times in 2019. The concentration of biochanin A was up to 3.2 times higher in samples from the second season (water stress). This study demonstrates that water stress induces biosynthesis of biochanin A. However, positive changes in the biochanin A concentration are overshadowed by negative changes in the grain yield. Therefore, water stress, which may be worsened by climate change in the upcoming years, may jeopardize both the production of chickpeas and the supply of biochanin A, a bioactive compound that can be used to produce dietary supplements and/or nutraceuticals.


Assuntos
Cicer/química , Cicer/metabolismo , Desidratação/metabolismo , Chile , Cromatografia Líquida , Cicer/crescimento & desenvolvimento , Mudança Climática/economia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flavonoides/metabolismo , Espectrometria de Massas , Fenóis/análise , Sementes/química
14.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477281

RESUMO

A clear gap with respect to the potential biological properties of wheat flavonoids exists in the available literature. This information is crucial for breeding programs aiming to produce new varieties presenting improved health benefits. Accordingly, advanced breeding lines of whole durum wheat were evaluated in this contribution. The highest recovery of phenolics was achieved using aqueous acetone (50:50, v/v), as verified by multi-response optimization, thus showing that phenolics could be largely underestimated by employing an inappropriate extraction. The concentration of derivatives of apigenin, the main phenolics present, ranged from 63.5 to 80.7%, as evaluated by LC-ESI-QTOF-MS. Phenolics from the breeding line 98 exhibited the highest ability in scavenging peroxyl radicals, reducing power as well as in terms of inhibition of pancreatic lipase activity, a key enzyme regulating the absorption of triacylglycerols. In contrast, none of the samples exhibited a significant anti-diabetic potential. Despite their high concentration compared to that of phenolic acids, results of this work do not support a significant antioxidant and pancreatic lipase inhibitory effect of durum wheat flavonoids. Therefore, breeding programs and animal and/or human trials related to the effect of durum wheat flavonoids on oxidative stress and absorption of triacylglycerols are discouraged at this point.


Assuntos
Antioxidantes/química , Inibidores Enzimáticos/química , Flavonoides/química , Triticum/química , Animais , Humanos , Estudos Prospectivos
15.
Compr Rev Food Sci Food Saf ; 20(3): 2382-2427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33719194

RESUMO

Seeds play important roles in human nutrition and health since ancient time. The term "specialty" has recently been applied to seeds to describe high-value and/or uncommon food products. Since then, numerous studies have been conducted to identify various classes of bioactive compounds, including polyphenols in specialty seeds. This review discusses nutrients, fat-soluble bioactives, polyphenols/bioactives, antioxidant activity, bioavailability, health benefits, and safety/toxicology of commonly consumed eight specialty seeds, namely, black cumin, chia, hemp, flax, perilla, pumpkin, quinoa, and sesame. Scientific results from the existing literature published over the last decade have been compiled and discussed. These specialty seeds, having numerous fat-soluble bioactives and polyphenols, together with their corresponding antioxidant activities, have increasingly been consumed. Hence, these specialty seeds can be considered as a valuable source of dietary supplements and functional foods due to their health-promoting bioactive components, polyphenols, and corresponding antioxidant activities. The phytochemicals from these specialty seeds demonstrate bioavailability in humans with promising health benefits. Additional long-term and well-design human intervention trials are required to ascertain the health-promoting properties of these specialty seeds.


Assuntos
Compostos Fitoquímicos , Sementes , Disponibilidade Biológica , Humanos , Nutrientes , Polifenóis/análise , Sementes/química
16.
Mar Drugs ; 18(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455954

RESUMO

Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.


Assuntos
Suplementos Nutricionais , Alimento Funcional , Preparações Farmacêuticas , Pepinos-do-Mar , Animais , Oceanos e Mares
17.
Mar Drugs ; 18(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961970

RESUMO

Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.


Assuntos
Organismos Aquáticos/metabolismo , Colágeno Tipo I/química , Pepinos-do-Mar/metabolismo , Animais , Colágeno Tipo I/isolamento & purificação , Humanos
18.
J Dairy Sci ; 103(2): 1131-1140, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759605

RESUMO

This work aimed to characterize the phenolic composition and in vitro antioxidant and antiproliferative properties of lyophilized camu-camu (Myrciaria dubia) seed extract (LCE), and to assess the effects of LCE on the antioxidant and sensory traits of yogurt. The LCE contained 46.3% (wt/wt) total phenolic content; the main compounds quantified were vescalagin, castalagin, gallic acid, procyanidin A2, and (-)-epicatechin. The LCE had antioxidant activity, as measured by different chemical assays (2,2-diphenyl-1-picrylhydrazyl, Folin-Ciocalteu reducing capacity, total reducing capacity, ferric reducing antioxidant power, and Cu2+ chelating capacity), and inhibited the cell proliferation of HepG2 cells (human hepatoma carcinoma; IC50 = 1,116 µg/mL) and Caco-2 cells (human colorectal adenocarcinoma epithelial cells; IC50 = 608.5 µg/mL). In addition, LCE inhibited the in vitro activity of α-amylase, α-glucosidase, and angiotensin-converting enzyme, and protected DNA from peroxyl radical-induced scission. When added to yogurts, different concentrations of LCE (0, 0.25, 0.5, 0.75, and 1.0 g/100 g) increased the chemical antioxidant and reducing capacities. The camu-camu yogurt containing LCE at 0.25 g/100 g had an acceptance index of 84%, showing that camu-camu seed extract may be a potential ingredient for addition to yogurts.


Assuntos
Antioxidantes/farmacologia , Myrtaceae/química , Extratos Vegetais/farmacologia , Iogurte , Antioxidantes/isolamento & purificação , Células CACO-2 , Catequina/análise , Células Hep G2 , Humanos , Taninos Hidrolisáveis/análise , Fenóis/análise , Proantocianidinas/análise , Sementes/química
19.
Molecules ; 25(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033416

RESUMO

The Brazilian Food Supplement Law recently recognized that guarana (Paullinia cupana) contains bioactive substances, hence supporting its role as a functional food ingredient. The health benefits of guarana are associated, at least in part, to its phenolic compounds. However, to the best of our knowledge, there is no literature addressing the presence of phenolic compounds in the fraction containing insoluble-bound compounds and its contribution in terms of alpha-glucosidase inhibition. The concentration of phenolic extracts released from the insoluble-bound fraction required to inhibit 50% of alpha-glucosidase (IC50) activity was 5.8-fold lower than that present in the soluble counterpart. Both fractions exhibited a mixed inhibition mode. Fourteen proanthocyanidins (dimers to tetramers) present in the insoluble-bound fraction were tentatively identified by MALDi-TOF-MS. Future studies aiming at increasing the concentration of the soluble counterpart are deemed necessary. The results presented here enhance the phenolic database of guarana and have a practical impact on the procurement of nutraceuticals and functional ingredients related to the prevention and/or management of type 2 diabetes. The Brazilian normative on food supplements has been recently revised. This study lends support to the future inclusion of guarana powder in the list of sources of proanthocyanidins for the industry of food supplements.


Assuntos
Cafeína/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Teobromina/farmacologia , Teofilina/farmacologia , Brasil , Cafeína/química , Suplementos Nutricionais , Humanos , Medicina Tradicional/métodos , Paullinia/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Teobromina/química , Teofilina/química , alfa-Glucosidases/efeitos dos fármacos
20.
J Sci Food Agric ; 100(6): 2544-2553, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32017121

RESUMO

BACKGROUND: Fresh shrimp (Penaeus vannamei) deteriorates easily and the drying process is an important processing method for prolonging the shelf life of shrimp. The traditional drying method is hot-air-drying (HD), which can cause some problems such as nutrient loss, discoloration and lipid oxidation. In recent years, freeze-drying (FD) has been popular for removing moisture from food at lower temperatures, maintaining the structure of raw materials, and improving storage stability of products. In the present study, the effects of HD and FD on lipid and color of P. vannamei and the mechanisms involved were investigated. RESULTS: FD caused less lipid oxidation compared to HD; consequently, FD-processed shrimps had lower levels of primary and secondary oxidation products, as well as acid value, and higher contents of triacylglycerol, phosphatidylcholine, phosphatidylethanolamine, eicosapentaenoic acid and docosahexaenoic acid compared to HD-processed samples. Lipase and lipoxygenase played a role in the oxidation and hydrolysis of lipids during drying process. FD-processed shrimps had lower yellowness value and chromatic aberrations but a higher whiteness value compared to HD-processed samples. Correlation analysis showed that lipid oxidation, astaxanthin degradation and the Maillard reaction contributed to the changes of color. Principal component analysis indicated that FD caused less deterioration in quality compared to HD. CONCLUSION: In the present study, FD is recommended for preserving shrimp color and lipid nutrition in terms of lipid oxidation control. © 2020 Society of Chemical Industry.


Assuntos
Dessecação/métodos , Liofilização/métodos , Penaeidae/química , Animais , Cor , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Hidrólise , Metabolismo dos Lipídeos , Reação de Maillard , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA