Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 275-281, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118145

RESUMO

The droplet size in emulsions is known to affect the rheological properties and plays a crucial role in many applications of emulsions. Despite its importance, the underlying mechanisms governing droplet size in emulsification remain poorly understood. We investigate the average drop size and size distribution upon emulsification with a high-shear mixer for model oil-in-water emulsions stabilized by a surfactant. The size distribution is found to be a log-normal distribution resulting from the repetitive random breakup of drops. High-shear emulsification, the usual way of making emulsions, is therefore found to be very different from turbulent emulsification given by the Kolmogorov-Hinze theory, for which power-law distributions of the drop size are expected. In agreement with this, the mean droplet size does not follow a scaling with the Reynolds number of the emulsification flow but rather a capillary number scaling based on the viscosity of the continuous phase.

2.
Langmuir ; 39(15): 5462-5468, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37024431

RESUMO

The unidirectional drying of water in cylindrical capillaries has been described since the discovery of Stefan's solution as a vapor diffusion-controlled process with a square root of time kinetics. Here we show that this well-known process actually depends on the way the capillary is closed. Experiments are performed on the evaporation of water in capillaries closed at one end with a solid material or connected to a fluid reservoir. While we recover Stefan's solution in the first case, we show that in the second situation the water plug evaporates at a constant rate with the water-air meniscus remaining pinned at the exit where evaporation proceeds. The presence of the liquid reservoir closing the capillary combined with a capillary pumping effect induces a flow of the water plug toward the evaporation front leading to a constant-rate drying, substantially faster than the prediction of Stefan's equation. Our results show that a transition from a constant-rate evaporation regime at short times to a diffusion-driven evaporation regime at long times can be observed by increasing the viscosity of the fluid in the reservoir blocking the other end of the capillary. Such transition can also be observed by connecting the capillary end to a solidifying fluid like epoxy glue.

3.
Langmuir ; 39(50): 18208-18214, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051540

RESUMO

We investigated the nucleation and growth processes of individual NaCl crystals from an evaporating salt solution that is supersaturated. We find that crystals nucleate at the liquid/vapor interface, resulting in distinct "pendant" crystals, which reach millimeter dimensions. The substantial size of the crystals induces deformation of the interface. This process and the evaporation rate, in turn, determine the final crystal shape, which features a deep central cavity. Our findings reveal that a delicate balance exists between gravity, buoyancy, and the surface tension of the liquid/vapor interface that allows the crystal to remain pendant. When the contact angle of the crystal with the meniscus reaches 90°, the crystal disconnects from the interface and falls into the solution. We quantitatively predict the critical mass at which this occurs.

4.
J Phys Chem A ; 127(36): 7638-7645, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37656920

RESUMO

The Stokes-Einstein relation, which relates the diffusion coefficient of a molecule to its hydrodynamic radius, is commonly used to determine molecular sizes in chemical analysis methods. Here, we combine the size sensitivity of such diffusion-based methods with the structure sensitivity of Raman spectroscopy by performing Raman diffusion-ordered spectroscopy (Raman-DOSY). The core of the Raman-DOSY setup is a flow cell with a Y-shaped channel containing two inlets: one for the sample solution and one for the pure solvent. The two liquids are injected at the same flow rate, giving rise to two parallel laminar flows in the channel. After the flow stops, the solute molecules diffuse from the solution-filled half of the channel into the solvent-filled half at a rate determined by their hydrodynamic radius. The arrival of the solute molecules in the solvent-filled half of the channel is recorded in a spectrally resolved manner by Raman microspectroscopy. From the time series of Raman spectra, a two-dimensional Raman-DOSY spectrum is obtained, which has the Raman frequency on one axis and the diffusion coefficient (or equivalently, hydrodynamic radius) on the other. In this way, Raman-DOSY spectrally resolves overlapping Raman peaks arising from molecules of different sizes. We demonstrate Raman-DOSY on samples containing up to three compounds and derive the diffusion coefficients of small molecules, proteins, and supramolecules (micelles), illustrating the versatility of Raman-DOSY. Raman-DOSY is label-free and does not require deuterated solvents and can thus be applied to samples and matrices that might be difficult to investigate with other diffusion-based spectroscopy methods.

5.
Langmuir ; 37(20): 6243-6247, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33983746

RESUMO

Surfactants are often added to water to increase the wetting of hydrophobic surfaces. We previously showed that most surfactant solutions behave identically to simple liquids with the same surface tension, indicating that the surfactants do not change the wettability of the solid surface itself. Here, we show that the superspreading surfactant Silwet results in a systematically higher contact angle on a hydrophobic surface than other surfactant solutions of comparable liquid-vapor surface tension. We also experimentally observe this "antisurfactant" behavior for CTAB on hydrophilic substrates. Supported by sum-frequency generation spectroscopy results, we suggest that this effect is due to charge-binding of the surfactant with the substrate.

6.
Int J Cosmet Sci ; 43(4): 458-465, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008867

RESUMO

OBJECTIVE: Cosmetic emulsions containing hyaluronic acid are ubiquitous in the cosmetic industry. However, the addition of (different molecular weight) hyaluronic acid can affect the filament stretching properties of concentrated emulsions. This property is often related to the "stringiness" of an emulsion, which can affect the consumer's choice for a product. It is thus very important to investigate and predict the effect of hyaluronic acid on the filament stretching properties of cosmetic emulsions. METHODS: Model emulsions and emulsions with low and high molecular weights are prepared and their filament stretching properties are studied by the use of an extensional rheometer. Two different stretching speeds are employed during the stretching of the emulsions, a low speed at 10 µm/s and a high speed at 10 mm/s. The shear rheology of the samples is measured by rotational rheology. RESULTS: We find that filament formation only occurs at high stretching speeds when the emulsion contains high molecular weight hyaluronic acid. The formation of this filament, which happens at intermediate states of the break-up, coincides with an exponential decay in the break-up dynamics. The beginning and end of the break-up of high molecular weight hyaluronic acid emulsions show a power law behaviour, where the exponent depends on the initial stretching rate. At a lower stretching speed, no filament is observed for both high molecular weight and low molecular weight hyaluronic acid emulsions and the model emulsion. The emulsions show a power law behaviour over the whole break-up range, where the exponent also depends on the stretching rate. No significant difference is observed between the shear flow properties of the emulsions containing different molecular weights hyaluronic acid. CONCLUSION: In this work, we underline the importance of the molecular weight of hyaluronic acid on the elongational properties of concentrated emulsions. The filament formation properties, for example the stringiness, of an emulsion is a key determinant of a product liking and repeat purchase. Here, we find that high molecular weight hyaluronic acid and a high stretching speed are the control parameters affecting the filament formation of an emulsion.


OBJECTIF: Les émulsions contenant de l'acide hyaluronique sont omniprésentes dans l'industrie cosmétique. En particulier, l'ajout d'acide hyaluronique (de poids moléculaires différents) peut affecter les propriétés extensionnelles d'un filament d'émulsion concentrée. Cette propriété importante est souvent assimilée à la perception organo-sensorielle "filante/cohésive" d'une émulsion et peut influer sur le choix final du consommateur pour un produit. Il est donc important d'étudier, mais aussi de pouvoir prédire, l'effet de l'acide hyaluronique sur les propriétés d'étirement de filaments d'émulsions cosmétiques. MÉTHODES: Nous avons préparé des émulsions modèles à faible et grands poids moléculaires et étudié leurs propriétés extensionnelles à l'aide d'un rhéomètre extensionnel. Deux vitesses d'étirement différentes sont utilisées, une vitesse faible à 10 µm/s et une vitesse élevée à 10 mm/s. La rhéologie de cisaillement des échantillons est mesurée par rhéologie rotationnelle. RÉSULTATS: Nous constatons que la formation de filaments ne se produit que pour des vitesses d'étirement élevées et lorsque l'émulsion contient de l'acide hyaluronique à grands poids moléculaire. La formation de ce filament, qui se produit à des temps intermédiaires de la rupture, coïncide avec une décroissance exponentielle de la dynamique de rupture. Le début et la fin de la rupture des émulsions d'acide hyaluronique de grands poids moléculaire montrent un comportement en loi de puissance, où l'exposant dépend de la vitesse d'étirement initiale. À une vitesse d'étirement inférieure, aucun filament n'est observé, à la fois pour les émulsions d'acide hyaluronique à grands et faibles poids moléculaires, mais aussi pour l'émulsion modèle ne contenant pas d'acide hyaluronique. Les émulsions présentent un comportement en loi de puissance sur tout le régime de rupture, où l'exposant dépend également de la vitesse d'étirement. Aucune différence significative n'est observée quant aux propriétés d'écoulement de cisaillement des émulsions contenant différents poids moléculaires d'acide hyaluronique. CONCLUSION: Dans cette étude, nous soulignons l'importance du poids moléculaire de l'acide hyaluronique sur les propriétés extensionnelles d'émulsions concentrées. Les propriétés de formation de filaments, ou la perception filante/cohésive d'une émulsion, sont un facteur clé dans l'appréciation d'un produit afin d'assurer un achat répété. Nous démontrons que la présence d'acide hyaluronique à grands poids moléculaires ainsi qu'une vitesse d'étirement élevée, sont les paramètres de contrôle affectant la formation de filaments dans une émulsion.


Assuntos
Cosméticos/química , Emulsões/química , Ácido Hialurônico/química , Peso Molecular , Reologia
7.
Langmuir ; 36(46): 13784-13792, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33164529

RESUMO

We investigate the influence of surfactants on capillary rise and corner flow in angular pores. We therefore study capillary rise for simple fluids and surfactant solutions, comparing square to cylindrical capillaries. We show that fingers start to form in the corners of the square capillaries when the capillary rise slows down before reaching the equilibrium height. The corner flow scales as t1/3 and its quantitative understanding necessitates that the surface wettability is taken into account in terms of the liquid's advancing contact angle on the capillary walls inside the corner. Adding surfactants to water greatly influences the corner flow in square capillaries: depending on the nature of the surfactant, the corner flow can be either suppressed completely due to autophobic effects or enhanced due to the presence of Marangoni stresses caused by a surface tension gradient inside the liquid fingers.

8.
Langmuir ; 36(27): 7956-7964, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545966

RESUMO

We study the influence of high NaCl concentrations on the equilibrium and dynamic surface tensions of ionic (CTAB) and nonionic (Tween 80) surfactant solutions. Equilibrium surface tension measurements show that NaCl significantly reduces the critical micellar concentration (CMC) of CTAB but has no effect on the CMC of Tween 80. Dynamic surface tension measurements allow comparing the surface tension as a function of time for pure surfactant solutions and in the presence of NaCl. For the ionic surfactant, the dynamics agree with the usual diffusion-limited interfacial adsorption kinetics; however, the kinetics become orders of magnitude slower when NaCl is present. Sum-frequency generation spectroscopy experiments and the equilibrium adsorption measurements show that the presence of NaCl in CTAB solution leads to the formation of ion pairs at the surface, thereby neutralizing the charge of the head group of CTAB. This change, however, is not able to account for the slowing down of adsorption dynamics; we find that it is rather the decreases in the monomer concentration (CMC) in the presence of salt which has the major influence. For the nonionic surfactant, the kinetics of interfacial tension is seen to be already very slow, and the addition of salt does not influence it further. This also correlates very well to the very low CMC of Tween 80.

9.
Langmuir ; 34(41): 12344-12349, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30240229

RESUMO

Surface active agents (surfactants) are commonly used to improve the wetting of aqueous solutions on hydrophobic surfaces. The improved wettability is usually quantified as a decrease of the contact angle θ of a droplet on the surface, where the contact angle θ is given by the three surface tensions involved. Surfactants are known to lower the liquid-vapor surface tension, but what they do to the two other surface tensions is less clear. We propose an improved Zisman method for quantifying the wetting behavior of surfactants at the solid surface. This allows us to show that a number of very common surfactants do not change the wettability of the solid: they give the same contact angle as a simple liquid with the same liquid-vapor surface tension. Surface-specific sum-frequency generation spectroscopy shows that nonetheless surfactants are present at the solid surface. The surfactants therefore change the solid-liquid and solid-vapor surface tensions by the same amount, leading to an unchanged contact angle.

10.
Langmuir ; 33(17): 4260-4268, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28425711

RESUMO

We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization.

11.
Langmuir ; 31(3): 906-11, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25547006

RESUMO

It is well known that surfactants decrease both water/air and water/oil interfacial tensions whereas in contrast inorganic salts increase both. We study a new, third class of surface-active ionic solutes, which have been called antagonistic salts, consisting of an organic group with a small inorganic counterion. These show decreased interfacial tension at the oil/water interface due to a redistribution of the organic group in the oil but do not show any surface activity at the air/water interface and are consequently different from surfactants that lower both tensions. We use a simple modeling using Poisson-Boltzmann theory that accounts for the surface activity of the antagonistic salt at the water/oil interface.

13.
J Phys Chem Lett ; 15(2): 628-635, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38205957

RESUMO

The sol-gel transition involves the transformation of a colloidal suspension into a system-spanning, interconnected gel. This process is widely used to reinforce mechanically weakened porous artifacts, such as sculptures but the impact of the restricted geometry (porous network) on the gelation dynamics of the solution remains unclear. Here, using fluorescent viscosity-sensitive molecular rotors, confocal microscopy, and model pores, we visualize the local viscosity changes at the microscale that accompany the sol-gel transition of a methyltriethoxysilane solution into a gel network. We show that, with evaporation of the solvent, a viscosity gradient develops near the free surface, triggering the sol-gel transition inside small pores near the surface. In homogeneous porous media, this leads to skin formation, which reduces the evaporation rate. In heterogeneous porous media, a gradient in gel density develops toward the heart of the porous material, where the gel formation mainly occurs as capillary bridges within smaller pores.

14.
Nat Commun ; 14(1): 1090, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841912

RESUMO

Deliquescence is a first-order phase transition, happening when a salt absorbs water vapor. This has a major impact on the stability of crystalline powders that are important for example in pharmacology, food science and for our environment and climate. Here we show that during deliquescence, the abundant salt sodium sulfate decahydrate, mirabilite (Na2SO4·10H2O), behaves differently than anhydrous salts. Using various microscopy techniques combined with Raman spectroscopy, we show that mirabilite crystals not only lose their facets but also become soft and deformable. As a result, microcrystals of mirabilite simultaneously behave crystalline-like in the core bulk and liquid-like at the surface. Defects at the surface can heal at a speed much faster than the deliquescence rate by the mechanism of visco-capillary flow over the surface. While magnesium sulfate hexahydrate (MgSO4⋅6H2O) behaves similarly during deliquescence, a soft and deformable state is completely absent for the anhydrous salts sodium chloride (NaCl) and sodium sulfate thenardite (Na2SO4). The results highlight the effect of crystalline water, and its mobility in the crystalline structure on the observed softness during deliquescence. Controlled hydrated salts have potential applications such as thermal energy storage, where the key parameter is relative humidity rather than temperature.

15.
ACS Omega ; 7(33): 28955-28961, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033721

RESUMO

Iron deficiency leading to anemia is one of the most severe and important nutritional deficiencies in the world today. To combat this deficiency, the fortification of food products with iron is a natural way to increase the global iron uptake. Here, we report a novel strategy for iron encapsulation in NaCl crystals via microscopic inclusions containing dissolved iron salt. The liquid inclusions embedded in the crystal insulate the reactive iron salts from their environment while assuring that iron is in a soluble and bioavailable form. While the size distribution of inclusions remains independent of the evaporation conditions, their density increases during crystallization at lower relative humidity. Using Raman confocal microspectroscopy, we have been able to analyze the morphology, length/thickness ratio, of inclusions and show that inclusions evolve toward a plate-like structure with the increase in size. By growing a pure NaCl shell around the iron-containing NaCl crystals, the stability of the composite crystals can be even further enhanced. The role of halite crystals as a carrier for iron fortification opens the way for the delivery of other types of micronutrients by including them in table salt.

16.
J Phys Chem Lett ; 11(17): 7388-7393, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787297

RESUMO

We show that macroscopic crystals of NaCl that form from evaporating drops of aqueous salt solutions can spontaneously lift themselves up and away from a hydrophobic surface. At the end of the evaporation process, tiny crystals of NaCl grow onto larger ones and form "legs" that push the large crystals away from the surface. The temperature dependence of the lifting speed is found to exhibit Arrhenius behavior with an activation energy similar to that of crystals growing in solution: the crystal growth itself determines the lifting speed that can be up to half a centimeter per minute. We show that surface hydrophobicity is a necessary but not a sufficient condition to obtain this "self-lifting" behavior.

17.
ACS Omega ; 5(49): 31575-31583, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344810

RESUMO

Caking constitutes a major problem for the flowability, transport, packaging, and consumption of hygroscopic granular crystalline materials such as salt. Sodium chloride is the most abundant salt on the earth and known to form strong lumps, mainly due to cycles of water uptake and water evaporation. We report on a multiscale study of the anticaking effect of the bio-based additive Fe-mTA, a metal-organic complex of iron (III) and meso-tartrate. Drying-deliquescence cycling experiments are performed to reproduce the situation in which the salt undergoes repeated humidity fluctuations. Our results show that Fe-mTA acts as a nucleation promoter and growth inhibitor by inducing roughness on the surface of crystals. To directly study the effect of Fe-mTA down to the micrometer scale, we study liquid capillary bridges between two macroscopic salt crystals by applying droplets of salt solution with various levels of additives. Scanning electron microscopy and three-dimensional (3D) laser scanning confocal profilometry results show that Fe-mTA produces a surface roughness at the micron scale. This roughness decreases the effective contact area between crystals and promotes the spreading of the liquid bridge; consequently, the formation of a solid bridge between grains with water evaporation is avoided, thus preventing the caking phenomenon and, in addition, preventing adhesion of the crystals to solid substrates.

18.
Nat Commun ; 9(1): 4191, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305638

RESUMO

The evaporation (sublimation) of ice and snow has a major impact on global climate, since the amount of ice and snow determines Earth's albedo. Yet, due to their complex geometry with several sharp regions which are singular for the evaporation, the precise evaporation dynamics of snow and ice crystals remains challenging to predict. Here, we study the sublimation of snowflakes and pointy ice drops. We show that the evaporation rates of water and ice drops are similar; they are both limited by the diffusive transport of the vapour. This allows us to predict ice and snowflake evaporation quantitatively by solving the diffusive free-boundary problem, which correctly predicts the rapid self-similar evolution of sharp edges and points. Beyond providing a conceptual picture to understand the sublimation of ice crystals, our results are more generally applicable to other diffusion problems such as the dissolution of salt crystals or pharmaceuticals.

19.
J Phys Chem Lett ; 9(11): 2961-2966, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29767976

RESUMO

The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 µm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA