Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(10): 5125-5133, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094173

RESUMO

Soft-bodied aquatic invertebrates, such as sea slugs and snails, are capable of diverse locomotion modes under water. Recapitulation of such multimodal aquatic locomotion in small-scale soft robots is challenging, due to difficulties in precise spatiotemporal control of deformations and inefficient underwater actuation of existing stimuli-responsive materials. Solving this challenge and devising efficient untethered manipulation of soft stimuli-responsive materials in the aquatic environment would significantly broaden their application potential in biomedical devices. We mimic locomotion modes common to sea invertebrates using monolithic liquid crystal gels (LCGs) with inherent light responsiveness and molecular anisotropy. We elicit diverse underwater locomotion modes, such as crawling, walking, jumping, and swimming, by local deformations induced by selective spatiotemporal light illumination. Our results underpin the pivotal role of the physicomechanical properties of LCGs in the realization of diverse modes of light-driven robotic underwater locomotion. We envisage that our results will introduce a toolbox for designing efficient untethered soft robots for fluidic environments.

2.
Soft Matter ; 18(42): 8063-8070, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35969176

RESUMO

The miniaturization of mechanical devices poses new challenges in powering, actuation, and control since traditional approaches cannot be used due to inherent size limitations. This is particularly challenging in untethered small-scale machines where independent actuation of multicomponent and multifunctional complex systems is required. This work showcases the integration of self-powered chemical motors and liquid crystal networks into a powertrain transmission device to achieve orthogonal untethered actuation for power and control. Driving gears with a protein-based chemical motor were used to power the transmission system with Marangoni propulsive forces, while photothermal liquid crystal networks were used as a photoresponsive clutch to engage/disengage the gear system. Liquid crystal networks were plasticized for optimized photothermal bending actuation to break the surface tension of water and achieve reversible immersion/resurfacing at the air-water interface. This concept is demonstrated in a milliscale transmission gear system and offers potential solutions for aquatic soft robots whose powering and control mechanisms must be necessarily decoupled.

3.
Soft Matter ; 13(44): 8006-8022, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090297

RESUMO

A plethora of living organisms are equipped with smart functionalities that are usually rooted in their surface micro/nanostructures or underlying muscle tissues. Inspired by nature, extensive research efforts have been devoted to the development of novel biomimetic functional micro/nanostructured systems. Despite all the accomplishments, the emulation of biological adaptation and stimuli responsive actuation has been a longstanding challenge. The use of liquid crystal elastomers (LCEs) and networks (LCNs) for the fabrication of smart biomimetic micro/nanostructures has recently drawn extensive scientific attention and has become a growing field of research with promising prospects for emerging technologies. In this study, we review the recent progress in this field and portray the current challenges as well as the outlook of this field of research.

4.
Adv Mater ; 36(12): e2303740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37392137

RESUMO

Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.

5.
Small Methods ; : e2400812, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044713

RESUMO

Stimuli-responsive shape-morphing hydrogels with self-healing and tunable physiochemical properties are excellent candidates for functional building blocks of untethered small-scale soft robots. With mechanical properties similar to soft organs and tissues, such robots enable minimally invasive medical procedures, such as cargo/cell transportation. In this work, responsive hydrogels based on zwitterionic/acrylate chemistry with self-healing and stimuli-responsiveness are synthesized. Such hydrogels are then judiciously cut and pasted to form hybrid constructs with predetermined swelling and elastic anisotropy. This method is used to program hydrogel constructs with predetermined 2D-to-3D deformation upon exposure to different environmental ionic strengths. Untethered soft robotic functionalities are demonstrated, such as actuation, magnetic locomotion, and targeted transport of soft and light cargo in flooded media. The proposed hydrogel expands the repertoire of functional materials for fabricating small-scale soft robots.

6.
Nat Commun ; 14(1): 6108, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777525

RESUMO

Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.

7.
Adv Sci (Weinh) ; 9(34): e2204730, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253140

RESUMO

Hydrogel actuators have shown great promise in underwater robotic applications as they can generate controllable shape transformations upon stimulation due to their ability to absorb and release water reversibly. Herein, a photoresponsive anisotropic hydrogel actuator is developed from poly(N-isopropylacrylamide) (PNIPAM) and gold-decorated carbon nitride (Au/g-C3 N4 ) nanoparticles. Carbon nitride nanoparticles endow hydrogel actuators with photocatalytic properties, while their reorientation and mobility driven by the electrical field provide anisotropic properties to the surrounding network. A variety of light-fueled soft robotic functionalities including controllable and programmable shape-change, gripping, and locomotion is elicited. A responsive flower-like photocatalytic reactor is also fabricated, for water splitting, which maximizes its energy-harvesting efficiency, that is, hydrogen generation rate of 1061.82 µmol g-1 h-1 , and the apparent quantum yield of 8.55% at 400 nm, by facing its light-receiving area adaptively towards the light. The synergy between photoactive and photocatalytic properties of this hydrogel portrays a new perspective for the design of underwater robotic and photocatalytic devices.


Assuntos
Hidrogéis , Robótica , Água
8.
Langmuir ; 27(12): 7732-42, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21612252

RESUMO

Inspired by the superior adhesive ability of the gecko foot pad, we report an experimental study of conformal adhesion of a soft elastomer thin film on biomimetic micropatterned surfaces (micropillars), showing a remarkable adhesion enhancement due to the surface patterning. The adhesion of a low-surface-energy poly(dimethylsiloxane) tape to a SU-8 micropatterned surface was found be able to increase by 550-fold as the aspect ratio increases from 0 to 6. The dependency of the adhesion enhancement on the aspect ratio is highly nonlinear. A series of peeling experiment coupled with optical interference imaging were performed to investigate the adhesion enhancement as a function of the height of the micropillars and the associated delamination mechanisms. Local elastic energy dissipation, side-wall friction, and plastic deformations were analyzed and discussed in terms of their contributions to the adhesion enhancement. We conclude that the local adhesion and friction events of pulling micropillars out of the embedded polymer film play a primary role in the observed adhesion enhancement. The technical implications of this local friction-based adhesion enhancement mechanism were discussed for the effective assembly of similar or dissimilar material components at small scales. The combined use of the micro/nanostructured surfaces with the van der Waals interactions seem to be a potentially more universal solution than the conventional adhesive bonding technology, which depends on the chemical and viscoelastic properties of the materials.


Assuntos
Mimetismo Molecular , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Termodinâmica
9.
Adv Mater ; 33(25): e2008605, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33987863

RESUMO

Programmable actuation of metastructures with predesigned geometrical configurations has recently drawn significant attention in many applications, such as smart structures, medical devices, soft robotics, prosthetics, and wearable devices. Despite remarkable progress in this field, achieving wireless miniaturized reconfigurable metastructures remains a challenge due to the difficult nature of the fabrication and actuation processes at the micrometer scale. Herein, microscale thermo-responsive reconfigurable metasurfaces using stimuli-responsive liquid crystal elastomers (LCEs) is fabricated as an artificial muscle for reconfiguring the 2D microscale kirigami structures. Such structures are fabricated via two-photon polymerization with sub-micrometer precision. Through rationally designed experiments guided by simulations, the optimal formulation of the LCE artificial muscle is explored and the relationship between shape transformation behaviors and geometrical parameters of the kirigami structures is build. As a proof of concept demonstration, the constructs for temperature-dependent switching and information encryption is applied. Such reconfigurable kirigami metastructures have significant potential for boosting the fundamental small-scale metastructure research and the design and fabrication of wireless functional devices, wearables, and soft robots at the microscale as well.

10.
Adv Mater ; 33(38): e2104807, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337803

RESUMO

Understanding the origin of structural ordering in supercooled liquid gallium (Ga) has been a great scientific quest in the past decades. Here, reflective polarized optical microscopy on Ga sandwiched between glasses treated with rubbed polymers reveals the onset of an anisotropic reflection at 120 °C that increases on cooling and persists down to room temperature or below. The polymer rubbing usually aligns the director of thermotropic liquid crystals (LCs) parallel to the rubbing direction. On the other hand, when Ga is sandwiched between substrates that align conventional LC molecules normal to the surface, the reflection is isotropic, but mechanical shear force induces anisotropic reflection that relaxes in seconds. Such alignment effects and shear-induced realignment are typical to conventional thermotropic LCs and indicate a LC structure of liquid Ga. Specifically, Ga textures obtained by atomic force and scanning electron microscopy reveal the existence of a lamellar structure corresponding to a smectic LC phase, while the nanometer-thin lamellar structure is transparent under transmission polarized optical microscopy. Such spatial molecular arrangements may be attributed to dimer molecular entities in the supercooled liquid Ga. The LC structure observation of electrically conductive liquid Ga can provide new opportunities in materials science and LC applications.

11.
Adv Mater ; 32(38): e2002753, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767434

RESUMO

The shape-shifting behavior of liquid crystal networks (LCNs) and elastomers (LCEs) is a result of an interplay between their initial geometrical shape and their molecular alignment. For years, reliance on either one-step in situ or two-step film processing techniques has limited the shape-change transformations from 2D to 3D geometries. The combination of various fabrication techniques, alignment methods, and chemical formulations developed in recent years has introduced new opportunities to achieve 3D-to-3D shape-transformations in large scales, albeit the precise control of local molecular alignment in microscale 3D constructs remains a challenge. Here, the voxel-by-voxel encoding of nematic alignment in 3D microstructures of LCNs produced by two-photon polymerization using high-resolution topographical features is demonstrated. 3D LCN microstructures (suspended films, coils, and rings) with designable 2D and 3D director fields with a resolution of 5 µm are achieved. Different shape transformations of LCN microstructures with the same geometry but dissimilar molecular alignments upon actuation are elicited. This strategy offers higher freedom in the shape-change programming of 3D LCN microstructures and expands their applicability in emerging technologies, such as small-scale soft robots and devices and responsive surfaces.

12.
ACS Appl Mater Interfaces ; 11(39): 36110-36117, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532609

RESUMO

Many emerging applications, such as water-based electronic devices and biological sensors, require local control of anisotropic properties. Lyotropic chromonic liquid crystals (LCLCs) are an exciting class of materials, which are usually biocompatible and provide uniaxial anisotropy through a director field but, to date, remain difficult to control. In this work, we introduce a simple strategy to realize an arbitrary orientation of LCLCs director field in two dimensions (2D). Our alignment strategy relies on surface topographical micro/nanostructures fabricated by two-photon laser writing. We show that the alignment of LCLCs can be: (a) precisely controlled with a remarkable pixel resolution of 2.5 µm and (b) patterned into an arbitrary 2D alignment (e.g., +2 topological defect) by a pixelated design and arrangement of micro/nanostructures. Using a similar strategy, we achieve a patternable homeotropic alignment of LCLCs with nanopillars. Finally, we demonstrate that a self-assembled three-dimensional alignment of LCLCs can be obtained due to the versatility of our alignment strategy. Our demonstration of LCLC director field control, which is not only straightforward to achieve but also compatible with other conventional micro/nanofabrication techniques, will provide new opportunities for the manufacturing of LC-based electronic and biological devices.

13.
Sci Adv ; 5(11): eaay0855, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31803840

RESUMO

Soft robotics may enable many new technologies in which humans and robots physically interact, yet the necessary high-performance soft actuators still do not exist. The optimal soft actuators need to be fast and forceful and have programmable shape changes. Furthermore, they should be energy efficient for untethered applications and easy to fabricate. Here, we combine desirable characteristics from two distinct active material systems: fast and highly efficient actuation from dielectric elastomers and directed shape programmability from liquid crystal elastomers. Via a top-down photoalignment method, we program molecular alignment and localized giant elastic anisotropy into the liquid crystal elastomers. The linearly actuated liquid crystal elastomer monoliths achieve strain rates over 120% per second with an energy conversion efficiency of 20% while moving loads over 700 times the elastomer weight. The electric actuation mechanism offers unprecedented opportunities toward miniaturization with shape programmability, efficiency, and more degrees of freedom for applications in soft robotics and beyond.

14.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859776

RESUMO

Self-peeling of gecko toes is mimicked by integration of film-terminated fibrillar adhesives to hybrid nematic liquid crystal network (LCN) cantilevers. A soft gripper is developed based on the gecko-inspired attachment/detachment mechanism. Performance of the fabricated gripper for transportation of thin delicate objects is evaluated by the optimum mechanical strength of the LCN and the maximum size of the adhesive patch.

15.
ACS Nano ; 11(1): 675-683, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045495

RESUMO

Bacteria have evolved as intelligent microorganisms that can colonize and form highly structured and cooperative multicellular communities with sophisticated singular and collective behaviors. The initial stages of colony formation and intercellular communication are particularly important to understand and depend highly on the spatial organization of cells. Controlling the distribution and growth of bacterial cells at the nanoscale is, therefore, of great interest in understanding the mechanisms of cell-cell communication at the initial stages of colony formation. Staphyloccocus aureus, a ubiquitous human pathogen, is of specific clinical importance due to the rise of antibiotic resistant strains of this species, which can cause life-threatening infections. Although several methods have attempted to pattern bacterial cells onto solid surfaces at single cell resolution, no study has truly controlled the 3D architectures of growing colonies. Herein, we present a simple, low-cost method to pattern S. aureus bacterial colonies and control the architecture of their growth. Using the wetting properties of micropatterened poly(dimethyl siloxane) platforms, with help from the physiological activities of the S. aureus cells, we fabricated connected networks of bacterial microcolonies of various sizes. Unlike conventional heterogeneous growth of biofilms on surfaces, the patterned S. aureus microcolonies in this work grow radially from nanostrings of a few bacterial cells, to form micrometer-thick rods when provided with a nutrient rich environment. This simple, efficient, and low-cost method can be used as a platform for studies of cell-cell communication phenomena, such as quorum sensing, horizontal gene transfer, and metabolic cross-feeding especially during initial stages of colony formation.

16.
Adv Mater ; 27(43): 6828-33, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26418411

RESUMO

Muscle-driven actuation of biomimetic microfibrillar structures is achieved using integrative soft-lithography on a backing splayed liquid-crystal elastomer (LCE). Variation in the backing LCE layer thickness yields different modes of thermal deformation from a pure bend to a twist-bend. Muscular motion and dynamic self-cleaning of gecko toe pads are mimicked via this mechanism.


Assuntos
Materiais Biomiméticos/química , Elastômeros , Cristais Líquidos/química , Músculos/fisiologia , Répteis , Animais , Movimento
17.
J Phys Chem B ; 117(1): 441-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23211004

RESUMO

Poly(acrylic acid-co-N,N'-methylenebisacrylamide) hydrogel films were synthesized by copolymerizing acrylic acid (AAc) with N,N'-methylenebisacrylamide (MBA) as a cross-linker via photo polymerization in the spacing confined between two glass plates. NMR spectroscopy was utilized to determine the cross-linking density. We found that the cross-linking density determined by NMR is higher than that expected from the feed concentrations of cross-linkers, suggesting that MBA is more reactive than AAc and the heterogeneous nature of the cross-linking. In addition to the swelling tests, indentation tests were performed on the hydrogel films under water to investigate effects of the cross-linking density on the adhesion and mechanical properties of the hydrogel films in terms of adhesive pull-off force and Hertz-type elastic modulus. As the cross-linker concentration increased, the effective elastic modulus of the hydrogel films increased dramatically at low cross-linking densities and reached a high steady-state value at higher cross-linking densities. The pull-off force decreased with increasing cross-linker concentration and reached a lower force plateau at high cross-linking densities. An optimal "trade-off" cross-linking density was determined to be 0.02 mol fraction of MBA in the hydrogel, where balanced elastic modulus and adhesive pull-off force can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA