Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
BMC Plant Biol ; 24(1): 569, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886652

RESUMO

BACKGROUND: Changing climate is causing erratic rainfall and prolonged drought periods, thus posing serious threats to crop productivity. Owing to severity of drought events, it is imperative to take proactive measures to enhance the resilience of drought sensitive crops like rice. Therefore, the present study was carried out to improve the drought stress tolerance in rice through gamma amino butyric acid (GABA) application. METHODS: The experiment was included four GABA concentrations i.e., 0 mM as control, 1 mM, 1.5 mM, and 2 mM, two water levels i.e., 100% and 50% field capacity (referred as FC100 for well-watered and FC50 for drought conditions, respectively), and two fragrant rice cultivars i.e., Super Basmati and Basmati-515. RESULTS: The findings unveiled a comprehensive improvement in various parameters with GABA application in fragrant rice under both well-watered (FC100) and water-limited (FC50) conditions, compared to the control. Specifically, GABA induced enhancements were observed in plant height, root length, fresh weight, dry weight, total soluble protein content, and total free amino acid content across both cultivars. Moreover, GABA application significantly improved peroxidase (POD) and catalase (CAT) enzyme activities, alongside elevating anthocyanin levels, while concurrently reducing H2O2 contents in both FC100 and FC50 treatments. Furthermore, the positive impact of GABA extended to morphological traits, with notable increases in panicle length, total tillers and productive tillers per hill, branch and grain numbers per panicle, and 1000-grain weight for Super Basmati and Basmati 515 cultivars under both water regimes, compared to Ck. Similarly, the grain yield increased by 31.01% and 27.32% under FC100 and 36.85% and 27.71% under FC50 in Super Basmati and Basmati-515, respectively, in response to GABA application, compared to Ck. Additionally, principal component analysis (PCA) revealed significant variances attributed to Dim1 and Dim2, with 86.1% and 4.0% of the variance, respectively, across three bi-plots encompassing rice cultivars, water levels, and GABA treatments. Notably, all tested indices, except for H2O2 and non-productive tillers per hill, exhibited positive correlations amongst themselves and with rice yield, further emphasizing the beneficial effects of GABA application on fragrant rice under well-watered and drought conditions. CONCLUSIONS: GABA significantly improved fragrant rice performance under both well-watered (FC100) and water-limited (FC50) conditions. Moreover, integrating GABA application into rice cultivation practices could not only improve the crop resilience to drought stress but also potentially benefiting the future food and nutritional security globally. However, however; further research is needed to understand the cellular and molecular mechanisms of the functionality of GABA in fragrant rice, particularly under drought conditions.


Assuntos
Secas , Oryza , Ácido gama-Aminobutírico , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Oryza/metabolismo , Ácido gama-Aminobutírico/metabolismo , Água/metabolismo
2.
Phys Chem Chem Phys ; 25(32): 21736-21747, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37552204

RESUMO

A large power factor and ultralow lattice thermal conductivity in 2D-monolayers of AuX (X = Cu and Ag) are achieved via first principles calculations. Low phonon frequency, small Debye temperature and high Gruneisen parameter limit the intrinsic thermal conductivity of both the studied materials. An ultra-low lattice thermal conductivity of 0.13 (0.30) W m-1 K-1 and 0.66 (1.59) W m-1 K-1 is obtained for unstrained AuCu and AuAg monolayers, respectively, at 700 (300) K, which further reduces to 0.04 (0.09) and 0.26 (0.63) W m-1 K-1 at 6% biaxial tensile strain. Such values of thermal conductivity are lower than the critical thermal conductivity for the state-of-art thermoelectric materials (kl < 2 W m-1 K-1). The peak values of ZT for unstrained monolayers are 2.20 and 1.40, which enhances to 3.61 and 2.91 at 6% strain for AuCu and AuAg monolayers, respectively. Interestingly pudding-mold band textures are found to be responsible for this unusual thermoelectric behaviour. The stability concerns (chemical/dynamic/mechanical) of these monolayers are ensured to stimulate experimental determinations for novel synthesis and possible applications.

3.
Int J Phytoremediation ; 25(10): 1269-1288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36404648

RESUMO

The world is going through a colossal drinking water scarcity. Unchecked discharge (even at trace levels) of Cr (VI) from industries into water bodies is a serious environmental concern. Here, we report waste fungal biomass (WFB) for the detoxification and removal of chromium ions. Biomass understudy was collected from Calocybe indica fruiting bodies. WFB was used after drying and pretreatment with two distinctive chemical methods, which improved the remediation effectiveness of Cr (VI). Light microscope and Field emission Scanning microscope (FESEM) were employed to elucidate the surface morphology of waste fungal biomass. While Fourier-Transform Infrared-Spectroscopy (FTIR) and Energy Dispersive X-Ray analysis (EDAX) were deployed to explore the mechanism of interaction between Cr (VI) anion and waste fungal biomass. X-ray Photoelectron Spectroscopy (XPS) analyses demonstrated considerable conversion of Cr (VI) into nontoxic Cr (III) species. The most favorable condition for optimum Cr (VI) remediation of 99.66% by treated waste fungal biomass (TWFB) occurred at pH 3, contact time 10 min, adsorbent dosage 3 gL-1, Cr (VI) concentration 4 mgL-1, stirring speed 140 rpm, and temperature 320 K, where for untreated waste fungal biomass (UWFB) the optimum of 85% remediation occurred at a contact time 15 min, and adsorbent dosage 2 gL-1 whereas other experimental conditions remained identical as TWFB biosorbent. Pseudo-second-order kinetics (R2 > 0.99) model matched the adsorption rate. And, the Freundlich isotherm model (R2 > 0.99) is shown to be a better match for the experimental data. The optimum amount of Cr (VI) adsorbed by the TWFB and UWFB were 205.8 ± 10.1 and 72.85 ± 2.36 mgg-1, respectively. Thermodynamic parameters revealed that the adsorption was spontaneous (ΔG ˂ 0), endothermic (ΔH > 0), and entropy-driven (ΔS > 0). The generated WFB adsorbent also has significant recycling potential. After five cycles of regeneration and adsorption. It can still keep up good remediation effectiveness of Cr (VI) ions to 85.5.


Waste biomaterials of mushroom origin are interesting for their application in the adsorption and removal of toxic heavy metals from wastewater. In the current study, the synthesized biosorbent is mainly composed of casing soil and substrate on which C. indica fruiting bodies grow. The casing soil consists of peat with various tiny and large pores and also has rich functionality for capturing metal ions, a crucial advantage of our sorbent over the reported biosorbent materials.


Assuntos
Ascomicetos , Poluentes Químicos da Água , Biodegradação Ambiental , Biomassa , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Adsorção , Cromo/química , Cinética , Carpóforos/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
4.
Physiol Plant ; 174(6): e13833, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437744

RESUMO

Alternate wetting and drying (AWD) has been recognized as a water-saving technology in rice production systems; however, pre- and post-flowering AWD could induce changes in yield, quality and aroma biosynthesis in fragrant rice. In the present study, two fragrant rice cultivars (Guixiangzhan and Nongxiang-18) were subjected to AWD till soil water potential reached -25 to -30 kPa during vegetative stage (VS), reproductive stage (RS), and both stages (VS + RS). The AWD did not affect net photosynthesis and gas exchange significantly, while malondialdehyde (MDA), H2 O2 and electrolyte leakage (EL) were higher than in control plants. The AWD treatments variably affected soluble sugars, proline and protein accumulation as well as the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and reduced glutathione (GSH) contents. Moreover, filled grain percentage and 1000-grain weight in AWD treatments were found to be statistically similar (p > 0.05) to control, except grains panicle-1 under AWD-VS + RS that was reduced by 11% and 14% for Guixiangzhan and Nongxiang-18, respectively. On average, yield and related attributes in Guixiangzhan remained higher than in Nongxiang-18. In addition, the grain aroma volatile (2-acetyl-1-pyrroline, 2-AP) content increased by 8.79%, 14.45%, and 6.87% and 7.95%, 14.02%, and 5.04% under AWD-VS, AWD-RS, and AWD-VS + RS treatments, for Guixiangzhan and Nongxiang-18, respectively. Overall, AWD treatments, either at VS or RS, could promote rice aroma in terms of accumulation of 2AP, which might be linked with enhanced endogenous proline contents (a precursor for 2AP biosynthesis) without any severe consequences on rice yield and quality.


Assuntos
Oryza , Oryza/metabolismo , Odorantes , Peroxidases/metabolismo , Grão Comestível/metabolismo , Água/metabolismo , Prolina/metabolismo
5.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628212

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy with a high mortality rate globally. For thousands of years, Cnidium monnieri has been used to treat human ailments and is regarded as a veritable treasure trove for drug discovery. This study has investigated the key active phytochemicals and molecular mechanisms of Cnidium monnieri implicated in curing HCC. We utilized the TCMSP database to collect data on the phytochemicals of Cnidium monnieri. The SwissTargetPrediction website tool was used to predict the targets of phytochemicals of Cnidium monnieri. HCC-related genes were retrieved from OncoDB.HCC and Liverome, two liver-cancer-related databases. Using the DAVID bioinformatic website tool, Gene Ontology (GO) and KEGG enrichment analysis were performed on the intersecting targets of HCC-related genes and active phytochemicals in Cnidium monnieri. A network of active phytochemicals and anti-HCC targets was constructed and analyzed using Cytoscape software. Molecular docking of key active phytochemicals was performed with anti-HCC targets using AutoDock Vina (version 1.2.0.). We identified 19 active phytochemicals in Cnidium monnieri, 532 potential targets of these phytochemicals, and 566 HCC-related genes. Results of GO enrichment indicated that Cnidium monnieri might be implicated in affecting gene targets involved in multiple biological processes, such as protein phosphorylation, negative regulation of the apoptotic process, which could be attributed to its anti-HCC effects. KEGG pathway analyses indicated that the PI3K-AKT signaling pathway, pathways in cancer, proteoglycans in cancer, the TNF signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and EGFR tyrosine kinase inhibitor resistance are the main pathways implicated in the anti-HCC effects of Cnidium monnieri. Molecular docking analyses showed that key active phytochemicals of Cnidium monnieri, such as ar-curcumene, diosmetin, and (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, can bind to core therapeutic targets EGFR, CASP3, ESR1, MAPK3, CCND1, and ERBB2. The results of the present study offer clues for further investigation of the anti-HCC phytochemicals and mechanisms of Cnidium monnieri and provide a basis for developing modern anti-HCC drugs based on phytochemicals in Cnidium monnieri.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cnidium/química , Receptores ErbB , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
6.
J Environ Manage ; 320: 115811, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056479

RESUMO

The Himalayan ecosystem is critical for ecological security and environmental sustainability. However, continuous deforestation is posing a serious threat to Himalayan sustainability. Changing land-use systems exert a tenacious impact on soil carbon (C) dynamics and regulate C emissions from Himalayan ecosystem. Therefore, this study was conducted to determine the changes in different C pools and associated soil properties under diverse land-use systems, viz. natural forest, natural grassland, maize field converted from the forest, plantation, and paddy field of temperate Himalaya in the surface (0-20 cm) and subsurface (20-40 cm) soils. The highest total organic carbon (24.24 g kg-1) and Walkley-black carbon contents (18.23 g kg-1), total organic carbon (45.88 Mg ha-1), and Walkley-black carbon stocks (34.50 Mg ha-1) were recorded in natural forest in surface soil (0-20 cm depth), while soil under paddy field had least total organic carbon (36.45 Mg ha-1) and Walkley-black carbon stocks (27.40 Mg ha-1) in surface soil (0-20 cm depth). The conversion of natural forest into paddy land results in 47.36% C losses. Among the cultivated land-use system, minimum C losses (29.0%) from different pools over natural forest system were reported under maize-filed converted from forest system. Land conversion causes more C losses (21.0%) in surface soil (0-20 cm depth) as compared to subsurface soil. Furthermore, conversion of forest land into paddy fields increased soil pH by 5.9% and reduced total nitrogen contents and microbial population by 28.0% and 7.0%, respectively. However, the intensity of total nitrogen and microbial population reduction was the lowest under maize fields converted from the forest system. The study suggested that the conversion of natural forest to agricultural land must be discouraged in the temperate Himalayan region. However, to feed the growing population, converted forest land can be brought under conservation effective maize-based systems to reduce C loss from the intensive land use and contribute to soil quality improvements and climate change mitigation.


Assuntos
Carbono , Ecossistema , Agricultura , Carbono/análise , Florestas , Índia , Nitrogênio/análise , Solo/química , Zea mays
7.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744911

RESUMO

This paper presents the strain effects on the structural, electronic and phonon properties of a newly proposed SrBaSn half Heusler compound. Since it is stable considering chemical thermodynamics, we tested its strength against uniform strain w.r.t phonon spectrum and it produces a direct bandgap of 0.7 eV. The direct bandgap reduces to 0.19 eV at -12% strain beyond which the structure is unstable. However, an indirect gap of 0.63 eV to 0.39 eV is observed in the range of +5% to +8% strain and afterwards the strain application destabilizes the structure. From elastic parameters, the ductile nature of this material is observed.

8.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235103

RESUMO

We hereby discuss the thermoelectric properties of PdXSn(X = Zr, Hf) half Heuslers in relation to lattice thermal conductivity probed under effective mass (hole/electrons) calculations and deformation potential theory. In addition, we report the structural, electronic, mechanical, and lattice dynamics of these materials as well. Both alloys are indirect band gap semiconductors with a gap of 0.91 eV and 0.82 eV for PdZrSn and PdHfSn, respectively. Both half Heusler materials are mechanically and dynamically stable. The effective mass of electrons/holes is (0.13/1.23) for Zr-type and (0.12/1.12) for Hf-kind alloys, which is inversely proportional to the relaxation time and directly decides the electrical/thermal conductivity of these materials. At 300K, the magnitude of lattice thermal conductivity observed for PdZrSn is 15.16 W/mK and 9.53 W/mK for PdHfSn. The highest observed ZT value for PdZrSn and PdHfSn is 0.32 and 0.4, respectively.

9.
Nanotechnology ; 32(24)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33662944

RESUMO

We present our work on the rapid hydrothermal synthesis of highly crystalline 2D SnS nanostructures. An innovative idea is used in which thioglycolic acid is the sulfur precursor source. Structural studies indicate the material has grown in a single-phase orthorhombic structure. The single-phase formation of the material is also confirmed from the rietveld refinement of the experimental XRD data and by raman spectroscopic analysis. Morphological studies show the formation of 2D sheets having thickness in the nanoscale (100-150 nm) dimensions. Optical absorbance studies show the material is visible-light active exhibiting an indirect bandgap of 1.1 eV and direct band gap ∼1.7 eV. Density functional theory calculations support the experimental bandgap results. Photocatalytic activity of the nanosheets was investigated against methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes employing a solar simulator as the source of photons (light source). The nanosheets were found to photodegrade 80% of MB, 77% of RhB and 60% of MO in 120 min of light illumination. Reusability and post catalytic properties affirm the durability and stability of the nanosheets, which is very important in the context of waste water treatment considering the toxic nature of the effluents from dye industries.

10.
Environ Res ; 195: 110839, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549623

RESUMO

The outbreak of COVID-19 pandemic has emerged as a major challenge from human health perspective. The alarming exponential increase in the transmission and fatality rates related to this disease has brought the world to a halt so as to cope up with its stern consequences. This has led to the imposition of lockdown across the globe to prevent the further spread of this disease. This lock down brought about drastic impacts at social and economic fronts. However, it also posed some positive impacts on environment as well particularly in the context of air quality due to reduction in concentrations of particulate matter (PM), NO2 and CO across the major cities of the globe as indicated by several research organizations. In China, Italy, France and Spain, there were about 20-30% reduction in NO2 emission while in USA 30% reduction in NO2 emission were observed. Compared to previous year, there was 11.4% improvement in the air quality in China. Drastic reductions in NO (-77.3%), NO2 (-54.3%) and CO (-64.8%) (negative sign indicating a decline) concentrations were observed in Brazil during partial lockdown compared to the five year monthly mean. In India there were about -51.84, -53.11, -17.97, -52.68, -30.35, 0.78 and -12.33% reduction in the concentration of PM10, PM2.5, SO2, NO2, CO, O3 and NH3 respectively. This article highlights the impact of lockdown on the environment and also discusses the pre and post lockdown air pollution scenario across major cities of the world. Several aspect of environment such as air, water, noise pollution and waste management during, pre and post lockdown scenario were studied and evaluated comprehensively. This research would therefore serve as a guide to environmentalist, administrators and frontline warriors for fighting our the way to beat this deadly disease and minimize its long term implications on health and environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Brasil , China , Cidades , Mudança Climática , Controle de Doenças Transmissíveis , Monitoramento Ambiental , França , Humanos , Índia , Itália , Pandemias , Material Particulado/análise , SARS-CoV-2 , Espanha
11.
Pediatr Cardiol ; 42(2): 442-450, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394110

RESUMO

Intravascular ultrasound (IVUS) has been introduced as an accurate and minimally invasive diagnostic technique for the assessment of vascular anatomy and its abnormalities. We believe that IVUS can be used for clarifying the reasons for failure of balloon angiography in infantile coarctation of the aorta (CoA), because post-balloon angioplasty tearing, intimal flap, thrombosis and pseudoaneurysm of the aorta can be evaluated by IVUS with greater sensitivity and specificity. We aimed to assess the outcome of balloon angioplasty of CoA using angiography as the gold standard and IVUS as a new method in infants, comparing the two techniques for the evaluation of the diameter and area of CoA segment pre- and post-procedure. This cross-sectional study was performed on 18 infants hospitalized with a final diagnosis of CoA. All the infants underwent angiography and were also assessed by IVUS to measure the preoperative and postoperative diameter of the narrow segment in the two anterior-posterior and lateral views. In assessment by IVUS, the mean diameter of the coarctation site increased from 2.10 ± 0.30 mm to 4.50 ± 0.94 mm (P < 0.001). Similarly, the average minimum area of the coarctation level increased from 5.26 ± 1.50 mm2 to 13.77 ± 3.48 mm2 after angioplasty (P < 0.001). Comparing these findings, angiography and IVUS showed a high level of agreement. In the assessment of a dissection flap, there was a high level of agreement between angioplasty and IVUS before the procedure, but IVUS had higher accuracy after the procedure. Our study showed that IVUS was more reliable than angiography in the assessment of residual coarctation. IVUS yielded high sensitivity (58.3%) and specificity (100%) for discriminating the presence and absence of residual coarctation as well as the need for repeating the procedure. The assessment of coarctation before and after angioplasty procedures in children is possible using the IVUS method, with high accuracy. IVUS can offer greater accuracy than angiography in the evaluation of the coarctation area, detecting tears, dissection and flaps, and assessment of residual coarctation.


Assuntos
Angioplastia com Balão/efeitos adversos , Coartação Aórtica/diagnóstico por imagem , Angiografia Coronária/métodos , Ultrassonografia de Intervenção/métodos , Coartação Aórtica/patologia , Criança , Estudos Transversais , Feminino , Humanos , Lactente , Masculino
12.
J Acoust Soc Am ; 149(6): 3862, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241480

RESUMO

The velocities of the seismic waves propagating in the fluid-mud layer are governed by the rheological properties and density of the fluid mud. Performing seismic transmission measurements inside the fluid mud can give good estimates of the seismic velocities and, thus, of the rheological properties and density. Laboratory ultrasonic transmission measurements of the wave velocities in the fluid-mud layer and their temporal evolution are shown. It is found that the shear-wave velocity and yield stress are positively correlated. Performing a seismic reflection survey for characterization of the fluid-mud layers could be more practical because it allows towing the sources and receivers above the top of fluid-mud layer. Interpretation of the results from a reflection survey, though, is influenced by the water layer above the fluid mud. Applying seismic interferometry to reflection measurements can eliminate the influence of the water layer and retrieve a reflection response from inside the fluid-mud layer. This eliminates the influence of the temperature and salinity of the water layer to obtain information about the seismic properties of the fluid-mud layer. To introduce the approach of retrieving and extracting the reflection response from inside the fluid-mud layer, data from laboratory measurements are used. The obtained compressional- and shear-wave velocities are validated by comparing them with values from current transmission measurements.

13.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419098

RESUMO

This study deals with the green synthesis of chromium oxide (Cr2O3) nanoparticles using a leaf extract of Abutilon indicum (L.) Sweet as a reducing and capping agent. Different characterization techniques were used to characterize the synthesized nanoparticles such as X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), Energy-dispersive X-ray (EDX), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-VIS) spectroscopy. The X-ray diffraction technique confirmed the purity and crystallinity of the Cr2O3 nanoparticles. The average size of the nanoparticles ranged from 17 to 42 nm. The antibacterial activity of the green synthesized nanoparticles was evaluated against four different bacterial strains, E. coli, S. aureus, B. bronchiseptica, and B. subtilis using agar well diffusion and a live/dead staining assay. The anticancer activities were determined against Michigan Cancer Foundation-7 (MCF-7) cancer cells using MTT and a live/dead staining assay. Antioxidant activity was investigated in the linoleic acid system. Moreover, the cytobiocompatibility was analyzed against the Vero cell lines using MTT and a live/dead staining assay. The results demonstrated that the green synthesized Cr2O3 nanoparticles exhibited superior antibacterial activity in terms of zones of inhibition (ZOIs) against Gram-positive and Gram-negative bacteria compared to plant extracts and chemically synthesized Cr2O3 nanoparticles (commercial), but comparable to the standard drug (Leflox). The green synthesized Cr2O3 nanoparticles exhibited significant anticancer and antioxidant activities against MCF-7 cancerous cells and the linoleic acid system, respectively, compared to chemically synthesized Cr2O3 nanoparticles. Moreover, cytobiocompatibility analysis displayed that they presented excellent biocompatibility with Vero cell lines than that of chemically synthesized Cr2O3 nanoparticles. These results suggest that the green synthesized Cr2O3 nanoparticles' enhanced biological activities might be attributed to a synergetic effect. Hence, green synthesized Cr2O3 nanoparticles could prove to be promising candidates for future biomedical applications.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Antioxidantes/química , Materiais Biocompatíveis/química , Compostos de Cromo/química , Nanopartículas Metálicas/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Química Verde/métodos , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica , Oxirredução/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Células Vero , Difração de Raios X
14.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830442

RESUMO

Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs' properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.


Assuntos
Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Olea/química , Extratos Vegetais/química , Prata/química
15.
J Environ Manage ; 287: 112295, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706096

RESUMO

There is an urgent need to meet the demand of water and nutrients by their reuse and recycling to gratify sustainable food production system and resource conservation. Chlorella minutissima was found to be very effective in the removal of electrical conductivity (EC), total dissolved solids, phosphorous (P), potassium (K), ammonium, nitrate, biological oxygen demand (BOD5) and chemical oxygen demand (COD) of sewage wastewater. We tested the effects of phycoremediated algal biomass addition to soil in field plots of baby corn and spinach, on plant growth, yield and soil chemical properties. The application of 100% nitrogen (N) fertilizer by algal biomass lead to higher economic yield of spinach and baby corn than recommended dose of mineral fertilizers. The available N and P content in experimental plots applied with algae biomass as biofertilizers were significantly higher than other treatments. The soil enzymes, such as urease, nitrate reductase, and dehydrogenase were analysed during the cropping season of baby corn and spinach. The soil supplied with 100% N by algae biomass (C. minutissima) significantly (P < 0.05) increased the dehydrogenase activity in spinach grown soil. While the nitrate reductase activity in soil supplied with algal manure was maximum (0.13 mg NO2-N produced g-1 soil 24 h-1) and significantly higher than other treatments in baby corn grown soil. This study revealed that phycoremediation coupled with biofertilizers production from algae biomass is a recycling and resource conservation exercise to reduce eutrophication, recycling of wastewater, recycling of plant nutrients and improvement of the soil quality in circular economy fertilization.


Assuntos
Chlorella , Biomassa , Produção Agrícola , Fertilização , Fertilizantes/análise , Nitrogênio , Solo
16.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918531

RESUMO

Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1-7. All the isolated pure compounds (1-7) were tested for their antimicrobial potential. Compounds 1 (4',8-dimethoxy-7-hydroxyisoflavone), 6 (5,3',3-trihydroxy-7,4'-dimethoxyflavanone), and 7 (5',7,8-trihydroxy-6,3',4'-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure-activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Boraginaceae/química , Simulação por Computador , Farmacorresistência Bacteriana , Flavonoides/química , Flavonoides/isolamento & purificação , Salmonella typhi/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Salmonella typhi/metabolismo , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
17.
J Mol Struct ; 1214: 128252, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32292211

RESUMO

A group of new nitro substituted benzoxazinones (3a-k) were synthesized from easily available 4-nitroanthranilic acid. All the synthesized compounds were characterized by FT-IR, 1H NMR, 13C NMR, mass spectrometry and elemental analysis. Anti-proliferative and pro-apoptotic potential of all the synthesized compounds (3a-k) was evaluated by MTT and Hoechst 33258 staining assay respectively whereas their antioxidant properties were determined via DPPH free radical scavenging assay. The most active compounds (3a, 3c and 3k) showed significant cytotoxic potential against HeLa cells with an inhibition of cell viability that ranged between 28.54 and 44.67% (P < 0.001). Albeit statistically different, the anti-proliferative effect of 3c was in close match with that of the reference drug doxorubicin. Likewise, the test compounds showed profound pro-apoptotic potential with an apoptotic index that ranged between 52.86 and 75.61%. Besides, the docking studies revealed a higher efficiency for compounds (3a and 3h) owing to their better affinity and inhibition constant (Ki = 4.397 and 3.713 nmol) respectively. The antioxidant potential of synthesized benzoxazinones (3a-k) was in close agreement with the experimental anticancer results with a percent inhibition from 34.45 to 85.93% as compared to standard (90.56%).

18.
Molecules ; 24(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470508

RESUMO

Viola betonicifolia (Violaceae) is commonly recognized as "Banafsha" and widely distributed throughout the globe. This plant is of great interest because of its traditional, pharmacological uses. This review mainly emphases on morphology, nutritional composition, and several therapeutic uses, along with pharmacological properties of different parts of this multipurpose plant. Different vegetative parts of this plant (roots, leaves, petioles, and flowers) contained a good profile of essential micro- and macronutrients and are rich source of fat, protein, carbohydrates, and vitamin C. The plant is well known for its pharmacological properties, e.g., antioxidant, antihelminthic, antidepressant, anti-inflammatory, analgesic, and has been reported in the treatment of various neurological diseases. This plant is of high economic value. The plant has potential role in cosmetic industry. This review suggests that V. betonicifolia is a promising source of pharmaceutical agents. This plant is also of significance as ornamental plant, however further studies needed to explore its phytoconstituents and their pharmacological potential. Furthermore, clinical studies are needed to use this plant for benefits of human beings.


Assuntos
Analgésicos/química , Anti-Helmínticos/química , Anti-Inflamatórios/química , Antidepressivos/química , Antioxidantes/química , Fármacos Neuroprotetores/química , Viola/química , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Humanos , Micronutrientes/classificação , Micronutrientes/isolamento & purificação , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Nutrientes/classificação , Nutrientes/isolamento & purificação , Fitoterapia/métodos , Componentes Aéreos da Planta/anatomia & histologia , Componentes Aéreos da Planta/química , Extratos Vegetais/análise , Extratos Vegetais/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/química , Plantas Medicinais , Viola/anatomia & histologia
19.
Microb Pathog ; 125: 366-384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30287189

RESUMO

A novel approach was employed for the synthesis of un-doped tinoxide and Cobalt-doped tinoxide (Co-doped SnO2) nanoparticles (NAPs) by using aqueous extract of Clerodendrum inerme with the help of eco-friendly superficial solution combustion method. Synthesized NAPs were characterized by different spectroscopic techniques and results from XRD, TEM, SEM, EDX and UV-Vis examines confirmed the successful synthesis, crystalline nature and spherical structure of un-doped SnO2 and Co-doped SnO2 NAPs with the average grain size of 30 and 40 nm; and band gap energy of 3.68 and 2.76 eV respectively. Antimicrobial propensity of the synthesized NAPs was determined by agar well assay, SEM, TEM and confocal laser scanning microscopic analysis against various bacterial and fungal strains. Synthesized Co-doped SnO2 NAPs were unveiled the extraordinary antibacterial and antifungal activities against E. coli, B. subtilis, A. niger, A. flavus, and C. albicans with the zone of inhibitions of 30 ±â€¯0.08 mm and 26 ±â€¯0.06 mm, 17 ±â€¯0.04 mm, 23 ±â€¯0.08 mm and 26 ±â€¯0.06 respectively which were also evidenced from SEM, TEM and confocal laser scanning microscopy. In addition, green synthesized Co-doped SnO2 NAPs were demonstrated the substantial antioxidant activity by scavenging DPPH, significant in vitro anticancer and in vivo antitumor activity on breast carcinoma cells (MCF-7) and Ehrlich ascites tumor cell lines respectively than standard. The hemolytic activity disclosed low cytotoxicity of fabricated NAPs (0.89 ±â€¯0.05%) at 5 mg/mL, which was indicated their biocompatibility potential. Hence, the multi-purpose properties of synthesized NAPs presented in the current study can be further deliberated for pharmaceutical and nanomedicine applications.


Assuntos
Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Clerodendrum/metabolismo , Nanopartículas/metabolismo , Compostos de Estanho/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/metabolismo , Neoplasias da Mama/tratamento farmacológico , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Picratos/metabolismo , Análise Espectral , Compostos de Estanho/isolamento & purificação , Compostos de Estanho/farmacologia , Células Tumorais Cultivadas
20.
Ecotoxicol Environ Saf ; 149: 128-134, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29156304

RESUMO

Rice cultivation in lead (Pb) polluted soils often leads to high Pb contents in rice grains. The present study investigated the dynamics of Pb uptake under different water regimes in two fragrant rice cultivars i.e., Guixiangzhan and Nongxiang-18. Results revealed that water dynamics regulated the antioxidant activities in both rice cultivars under Pb toxicity. Compared to continuous ponding (CP), taken as control, alternate wetting and drying (AWD) reduced the Pb contents in roots, stems, leaves, and grains up to 17%, 41%, 22%, and 52% in Guixiangzhan and 23%, 19%, 17%, and 37% in Nongxiang-18, respectively. Furthermore, AWD-treatments reduced paddy yield from 11% to 21% in Guixiangzhan and 11-33% in Nongxiang-18 under Pb toxicity. In conclusion, Pb loadings in fragrant rice can be regulated by effective water management and/or by controlling irrigation water at different growth stages. Special control measures or management is required to cultivate the rice in metal(loid)s polluted soils.


Assuntos
Irrigação Agrícola/métodos , Chumbo/análise , Oryza/química , Poluentes do Solo/análise , Transporte Biológico , China , Chumbo/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA