RESUMO
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4-/- testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility.
Assuntos
Acrossomo , Profilinas , Espermátides , Espermatogênese , Acrossomo/metabolismo , Animais , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermátides/metabolismo , Espermatogênese/genética , EspermatozoidesRESUMO
Detection of tumor progression in patients with glioblastoma remains a major challenge. Extracellular vesicles (EVs) are potential biomarkers and can be detected in the blood of patients with glioblastoma. In our study, we evaluated the potential of serum-derived EVs from glioblastoma patients to serve as biomarker for tumor progression. EVs from serum of glioblastoma patients and healthy volunteers were separated by size exclusion chromatography and ultracentrifugation. EV markers were defined by using a proximity-extension assay and bead-based flow cytometry. Tumor progression was defined according to modified RANO criteria. EVs from the serum of glioblastoma patients (n = 67) showed an upregulation of CD29, CD44, CD81, CD146, C1QA and histone H3 as compared to serum EVs from healthy volunteers (P value range: <.0001 to .08). For two independent cohorts of glioblastoma patients, we noted upregulation of C1QA, CD44 and histone H3 upon tumor progression, but not in patients with stable disease. In a multivariable logistic regression analysis, a combination of CD29, CD44, CD81, C1QA and histone H3 correlated with RANO-defined tumor progression with an AUC of 0.76. Measurement of CD29, CD44, CD81, C1QA and histone H3 in serum-derived EVs of glioblastoma patients, along with standard MRI assessment, has the potential to improve detection of true tumor progression and thus could be a useful biomarker for clinical decision making.
Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Histonas , Proteínas Sanguíneas , Integrina beta1RESUMO
Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.
Assuntos
Preservação do Sêmen , Animais , Criopreservação/métodos , Epididimo , Masculino , Proteoma , Ruminantes , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , EspermatozoidesRESUMO
Immune response genes are highly polymorphic in humans and mice, with heterogeneity amongst loci driving strain-specific host defence responses. The inadvertent retention of polymorphic loci can introduce confounding phenotypes, leading to erroneous conclusions, and impeding scientific advancement. In this study, we employ a combination of RNAseq and variant calling analyses to identify a substantial region of 129S genome, including the highly polymorphic Nlrp1 locus, proximal to Nlrp3, in one of the most commonly used mouse models of NLRP3 deficiency (Nlrp3tm1Flv). We show that the presence of the Nlrp1129S locus leads to an increase in NLRP1B protein expression, and a sensitising of Nlrp3tm1Flv macrophages to NLRP1 inflammasome activation, independent of NLRP3 deficiency. Retention of 129S genome further leads to protein sequence differences and altered gene regulation across multiple cell types, including of the key tissue-resident macrophage marker, TIM4. Using alternative models of NLRP3 deficiency, including a previously undescribed conditional Nlrp3 allele enabling precise temporal and cell-type specific control over Nlrp3 deletion, we further show that NLRP3 contributes to Talabostat-driven IL-1ß release. Our study also establishes a generic framework to identify functionally relevant SNPs and assess genomic contamination in transgenic mice using RNAseq data. This allows for unambiguous attribution of phenotypes to the target gene and advances the precision and reliability of research in the field of host defence responses.
RESUMO
Magnesium (Mg)-based implants have emerged as a promising alternative for orthopedic applications, owing to their bioactive properties and biodegradability. As the implants degrade, Mg2+ ions are released, influencing all surrounding cell types, especially mesenchymal stem cells (MSCs). MSCs are vital for bone tissue regeneration, therefore, it is essential to understand their molecular response to Mg2+ ions in order to maximize the potential of Mg-based biomaterials. In this study, we conducted a gene regulatory network (GRN) analysis to examine the molecular responses of MSCs to Mg2+ ions. We used time-series proteomics data collected at 11 time points across a 21-day period for the GRN construction. We studied the impact of Mg2+ ions on the resulting networks and identified the key proteins and protein interactions affected by the application of Mg2+ ions. Our analysis highlights MYL1, MDH2, GLS, and TRIM28 as the primary targets of Mg2+ ions in the response of MSCs during 1-21 days phase. Our results also identify MDH2-MYL1, MDH2-RPS26, TRIM28-AK1, TRIM28-SOD2, and GLS-AK1 as the critical protein relationships affected by Mg2+ ions. By offering a comprehensive understanding of the regulatory role of Mg2+ ions on MSCs, our study contributes valuable insights into the molecular response of MSCs to Mg-based materials, thereby facilitating the development of innovative therapeutic strategies for orthopedic applications.
RESUMO
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Assuntos
Interferon Tipo I , Ácidos Nucleicos , Camundongos , Animais , Proteína 1 com Domínio SAM e Domínio HD/genética , Imunidade Inata/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismoRESUMO
Low expression levels of the E3 ubiquitinprotein ligase Parkin (PARK2) are exhibited in several cancer entities, including clear cell renal cell carcinoma (ccRCC), and are associated with poor prognosis; however, PARK2 can also function as a tumor suppressor gene. The aim of the present study was to thoroughly investigate the effects of PARK2 overexpression in ccRCC cell lines and to determine its effects on malignancy by conducting functional assays such as cell cycle analysis, apoptosis analysis, migration and invasion assays. Furthermore, liquid chromatographymass spectrometry was used to decipher potential targets of PARK2 that may influence the behavior of ccRCC tumor cells. In addition, ccRCC tumor tissues from a patient cohort were examined in tissue microarrays to find correlations between different clinical parameters. In the present study, it was demonstrated that the induction of PARK2 resulted in a less aggressive phenotype, as indicated by lower migration and invasion in ccRCC cell lines. Mass spectrometry revealed decreased levels of 29 proteins in cells with PARK2 overexpression, including CDC28 protein kinase regulatory subunit 2 (CKS2), which is highly expressed in numerous types of cancer. The link between the function of PARK2 as an E3 ubiquitin ligase and the low expression levels of CKS2 was investigated by mutating the catalytic domain of the PARK2 gene, and it was found that the effect of decreased migration was abolished in 786O and RCCMH ccRCC cell lines. CKS2 silencing decreased migratory ability of the cells. Furthermore, it was revealed that high CKS2 levels are associated with high tumor grading in patient samples and lower patient survival. In conclusion, the results from the present study indicated that PARK2 may signal via CKS2 to affect tumor behavior. In consequence, CKS2 may be a biomarker in ccRCC and may also serve as potential target for ccRCC therapy.
Assuntos
Quinases relacionadas a CDC2 e CDC28/efeitos dos fármacos , Carcinoma de Células Renais/tratamento farmacológico , Proteínas de Ciclo Celular/efeitos dos fármacos , Ubiquitina-Proteína Ligases/farmacologia , Quinases relacionadas a CDC2 e CDC28/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Progressão da Doença , Humanos , Ubiquitina-Proteína Ligases/administração & dosagem , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Milk is a nutrient-rich biofluid that contains several biocomponents with distinctive functions, including extracellular vesicles (EV). Milk EV have been associated with the regulation of the newborn's immune system and to influence essential cellular development. The EV proteome comprises the protein constituents and cargo; changes in these compartments could impact their role mediating communication. The ratio of dietary ω-6 to ω-3 polyunsaturated fatty acids (PUFA) is known to affect health and inflammation, and to induce changes in milk fatty acid composition, but no reports have included the milk EV fraction so far. We isolated EV from milk samples obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet or a test diet enriched in ω-3 (ω6:ω3 = 4:1). Small milk-derived EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Using a TMT-based high-resolution quantitative approach, the proteomics analysis revealed variations in the milk EV proteome within the diet groups with differences in the abundance of spondin-2 and 78 kDa glucose-regulated protein. Future studies are encouraged to explore further dietary effects on milk EV composition and their relation to the offspring's development. SIGNIFICANCE: Milk EV are known as key players mediating the regulation of the infant's immune system and growth. The EV proteome comprises the protein constituents and protein cargo, and any changes in this system could impact their role in intercellular communication. This study aimed at evaluating how different ω-6:ω-3 ratios in the maternal diet could translate to the milk EV proteome. This is relevant for basic research, but also has applied aspects in animal nutrition and health and may provide new perspectives for feeding additives.
Assuntos
Vesículas Extracelulares , Ácidos Graxos Ômega-3 , Animais , Dieta , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/análise , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Leite/química , Proteoma/análise , SuínosRESUMO
Exosomes are membranous vesicles of endocytic origin, recently been considered as major players in cell-cell communication. Milk is highly complex, and diverse biocomponents provide adequate nutrition, transfer immunity, and promote adequate neonate development. Milk exosomes are suggested to have a key role in these processes, yet to be further explored, and the alteration of the exosomes' cargo in different stages of lactation stages is important for understanding the factors relevant in nursing and also for improving milk replacer products both for humans and animals. We isolated exosomes from porcine milk in different lactation stages and analyzed their content using a TMT-based high-resolution quantitative proteomic approach. Exosomes were isolated using ultracentrifugation coupled with size exclusion chromatography to enrich milk-derived exosomes in samples obtained at day 0, 7, and 14 after parturition, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Quantitative proteomics analysis revealed different proteome profiles for colostrum exosomes and milk exosomes. The functional analysis highlighted pathways related to the regulation of homeostasis to be upregulated in colostrum exosomes, and pathways such as endothelial cell development and lipid metabolism to be upregulated in mature milk exosomes. This study endorses the importance of exosomes as active biocomponents of milk and provides knowledge for future studies exploring their role in the regulation of immunity and growth of the newborn. SIGNIFICANCE: The identified functional proteome and protein-protein interaction networks identified in our study help to elucidate the role of milk exosomes in different lactation periods. The results generated herein are of relevance for the basic understanding of their impact on the infant's development but also for bringing forward the manufacturing of milk replacers.
Assuntos
Exossomos , Proteoma , Animais , Colostro , Feminino , Humanos , Leite , Gravidez , Proteômica , SuínosRESUMO
Protamines are the safeguards of the paternal sperm genome. They replace most of the histones during spermiogenesis, resulting in DNA hypercondensation, thereby protecting its genome from environmental noxa. Impaired protamination has been linked to male infertility in mice and humans in many studies. Apart from impaired DNA integrity, protamine-deficient human and murine sperm show multiple secondary effects, including decreased motility and aberrant head morphology. In this study, we use a Protamine-2 (Prm2)-deficient mouse model in combination with label-free quantitative proteomics to decipher the underlying molecular processes of these effects. We show that loss of the sperm's antioxidant capacity, indicated by downregulation of key proteins like Superoxide dismutase type 1 (SOD1) and Peroxiredoxin 5 (PRDX5), ultimately initiates an oxidative stress-mediated destruction cascade during epididymal sperm maturation. This is confirmed by an increased level of 8-OHdG in epididymal sperm, a biomarker for oxidative stress-mediated DNA damage. Prm2-deficient testicular sperm are not affected and initiate the proper development of blastocyst stage preimplantation embryos in vitro upon intracytoplasmic sperm injection (ICSI) into oocytes. Our results provide new insight into the role of Prm2 and its downstream molecular effects on sperm function and present an important contribution to the investigation of new treatment regimens for infertile men with impaired protamination.
Assuntos
Infertilidade Masculina/fisiopatologia , Protaminas/metabolismo , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Espécies Reativas de OxigênioRESUMO
Accurate diagnosis of periprosthetic joint infections (PJI) is one of the most widely researched areas in modern orthopedic endoprosthesis. However, our understanding of the immunological basis of this severe complication is still limited. In this study, we developed a flow cytometric approach to precisely characterize the immune cell composition in periprosthetic joints. Using high-dimensional multi-parametric data, we defined, for the first time, the local immune cell populations of artificial joints. We identified significant differences in the cellular distribution between infected and non-infected samples, and revealed that myeloid-derived suppressor cells (MDSCs) act as potential regulators of infiltrating immune cells in PJI. Further, we developed an algorithm to predict septic and aseptic samples with high sensitivity and specificity, that may serve as an indispensable addition to the current criteria of the Musculoskeletal Infection Society. This study describes a novel approach to flow cytometrically analyze the immune cell infiltrate of joint fluid that not only improves our understanding of the pathophysiology of PJI, but also enables the development of a novel screening tool to predict infection status. Our data further suggest that pharmacological targeting of MDSCs represents a novel strategy for addressing PJI.