Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 271-286, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823267

RESUMO

BACKGROUND: Prostacyclin is a fundamental signaling pathway traditionally associated with the cardiovascular system and protection against thrombosis but which also has regulatory functions in fibrosis, proliferation, and immunity. Prevailing dogma states that prostacyclin is principally derived from vascular endothelium, although it is known that other cells can also synthesize it. However, the role of nonendothelial sources in prostacyclin production has not been systematically evaluated resulting in an underappreciation of their importance relative to better characterized endothelial sources. METHODS: To address this, we have used novel endothelial cell-specific and fibroblast-specific COX (cyclo-oxygenase) and prostacyclin synthase knockout mice and cells freshly isolated from mouse and human lung tissue. We have assessed prostacyclin release by immunoassay and thrombosis in vivo using an FeCl3-induced carotid artery injury model. RESULTS: We found that in arteries, endothelial cells are the main source of prostacyclin but that in the lung, and other tissues, prostacyclin production occurs largely independently of endothelial and vascular smooth muscle cells. Instead, in mouse and human lung, prostacyclin production was strongly associated with fibroblasts. By comparison, microvascular endothelial cells from the lung showed weak prostacyclin synthetic capacity compared with those isolated from large arteries. Prostacyclin derived from fibroblasts and other nonendothelial sources was seen to contribute to antithrombotic protection. CONCLUSIONS: These observations define a new paradigm in prostacyclin biology in which fibroblast/nonendothelial-derived prostacyclin works in parallel with endothelium-derived prostanoids to control thrombotic risk and potentially a broad range of other biology. Although generation of prostacyclin by fibroblasts has been shown previously, the scale and systemic activity was unappreciated. As such, this represents a basic change in our understanding and may provide new insight into how diseases of the lung result in cardiovascular risk.


Assuntos
Epoprostenol , Trombose , Camundongos , Humanos , Animais , Fibrinolíticos , Células Endoteliais/metabolismo , Prostaglandinas I/metabolismo , Prostaglandinas I/farmacologia , Endotélio Vascular/metabolismo , Camundongos Knockout , Fibroblastos/metabolismo , Trombose/genética , Trombose/prevenção & controle , Trombose/metabolismo
2.
Circ Res ; 125(9): 847-854, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510878

RESUMO

RATIONALE: Endothelial cells (ECs) and platelets, which respectively produce antithrombotic prostacyclin and prothrombotic thromboxane A2, both express COX1 (cyclooxygenase1). Consequently, there has been no way to delineate any antithrombotic role for COX1-derived prostacyclin from the prothrombotic effects of platelet COX1. By contrast, an antithrombotic role for COX2, which is absent in platelets, is straightforward to demonstrate. This has resulted in an incomplete understanding of the relative importance of COX1 versus COX2 in prostacyclin production and antithrombotic protection in vivo. OBJECTIVE: We sought to identify the role, if any, of COX1-derived prostacyclin in antithrombotic protection in vivo and compare this to the established protective role of COX2. METHODS AND RESULTS: We developed vascular-specific COX1 knockout mice and studied them alongside endothelial-specific COX2 knockout mice. COX1 immunoreactivity and prostacyclin production were primarily associated with the endothelial layer of aortae; freshly isolated aortic ECs released >10-fold more prostacyclin than smooth muscle cells. Moreover, aortic prostacyclin production, the ability of aortic rings to inhibit platelet aggregation and plasma prostacyclin levels were reduced when COX1 was knocked out in ECs but not in smooth muscle cells. When thrombosis was measured in vivo after FeCl3 carotid artery injury, endothelial COX1 deletion accelerated thrombosis to a similar extent as prostacyclin receptor blockade. However, this effect was lost when COX1 was deleted from both ECs and platelets. Deletion of COX2 from ECs also resulted in a prothrombotic phenotype that was independent of local vascular prostacyclin production. CONCLUSIONS: These data demonstrate for the first time that, in healthy animals, endothelial COX1 provides an essential antithrombotic tone, which is masked when COX1 activity is lost in both ECs and platelets. These results help us define a new 2-component paradigm wherein thrombotic tone is regulated by both COX1 and COX2 through complementary but mechanistically distinct pathways.


Assuntos
Ciclo-Oxigenase 1/deficiência , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo , Fibrinolíticos/metabolismo , Deleção de Genes , Proteínas de Membrana/deficiência , Agregação Plaquetária/fisiologia , Animais , Aorta/metabolismo , Ciclo-Oxigenase 1/genética , Epoprostenol/genética , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
3.
J Allergy Clin Immunol ; 138(1): 249-261.e12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26792207

RESUMO

BACKGROUND: Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. OBJECTIVE: We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. METHODS: We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. RESULTS: Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. CONCLUSION: This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.


Assuntos
Trifosfato de Adenosina/metabolismo , Neurônios Aferentes/metabolismo , Sistema Respiratório/inervação , Sistema Respiratório/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sinalização do Cálcio , Tosse , Relação Dose-Resposta a Droga , Cobaias , Masculino , Camundongos , Camundongos Knockout , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/citologia , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Canais de Cátion TRPV/agonistas , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
4.
Respir Res ; 17(1): 67, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27255083

RESUMO

BACKGROUND: Asthma prevalence has increased world-wide especially in children; thus there is a need to develop new therapies that are safe and effective especially for patients with severe/refractory asthma. CD4(+) T cells are thought to play a central role in disease pathogenesis and associated symptoms. Recently, TRPV1 has been demonstrated to regulate the activation and inflammatory properties of CD4(+) cells. The aim of these experiments was to demonstrate the importance of CD4(+) T cells and the role of TRPV1 in an asthma model using a clinically ready TRPV1 inhibitor (XEN-D0501) and genetically modified (GM) animals. METHODS: Mice (wild type, CD4 (-/-) or TRPV1 (-/-)) and rats were sensitised with antigen (HDM or OVA) and subsequently topically challenged with the same antigen. Key features associated with an allergic asthma type phenotype were measured: lung function (airway hyperreactivity [AHR] and late asthmatic response [LAR]), allergic status (IgE levels) and airway inflammation. RESULTS: CD4(+) T cells play a central role in both disease model systems with all the asthma-like features attenuated. Targeting TRPV1 using either GM mice or a pharmacological inhibitor tended to decrease IgE levels, airway inflammation and lung function changes. CONCLUSION: Our data suggests the involvement of TRPV1 in allergic asthma and thus we feel this target merits further investigation.


Assuntos
Asma/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/induzido quimicamente , Asma/imunologia , Asma/prevenção & controle , Antígenos CD4/genética , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Imunoglobulina E/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/prevenção & controle , Pyroglyphidae/imunologia , Ratos Endogâmicos BN , Transdução de Sinais , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
5.
Respir Res ; 17: 45, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27112462

RESUMO

BACKGROUND: The incidence of asthma is increasing at an alarming rate and while the current available therapies are effective in the majority of patients they fail to adequately control symptoms at the more severe end of the disease spectrum. In the search to understand disease pathogenesis and find effective therapies animal models are often employed. As exposure to house dust mite (HDM) has a causative link, it is thought of as the allergen of choice for modelling asthma. The objective was to develop a HDM driven model of asthmatic sensitisation and characterise the role of key allergic effector cells/mediators. METHODS: Mice were sensitised with low doses of HDM and then subsequently challenged. Cellular inflammation, IgE and airway responsiveness (AHR) was assessed in wild type mice or CD4(+)/CD8(+) T cells, B cells or IgE knock out mice. RESULTS: Only those mice sensitised with HDM responded to subsequent low dose topical challenge. Similar to the classical ovalbumin model, there was no requirement for systemic alum sensitisation. Characterisation of the role of effector cells demonstrated that the allergic cellular inflammation and AHR was dependent on CD4(+) and CD8(+) T cells but not B cells or IgE. Finally, we show that this model, unlike the classic OVA model, appears to be resistant to developing tolerance. CONCLUSIONS: This CD4(+)/CD8(+) T cell dependent, HDM driven model of allergic asthma exhibits key features of asthma. Furthermore, we suggest that the ability to repeat challenge with HDM means this model is amenable to studies exploring the effect of therapeutic dosing in chronic, established disease.


Assuntos
Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Hipersensibilidade Respiratória/imunologia , Animais , Antígenos de Dermatophagoides/administração & dosagem , Asma/patologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/patologia
6.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741600

RESUMO

Endothelial cyclooxygenase-1-derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors.


Assuntos
Aterosclerose , Ciclo-Oxigenase 1/metabolismo , Epoprostenol , Proteínas de Membrana/metabolismo , Animais , Aterosclerose/etiologia , Ciclo-Oxigenase 1/genética , Epoprostenol/metabolismo , Camundongos , Prostaglandinas , Vasoconstrição
7.
Front Cell Dev Biol ; 9: 681347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497803

RESUMO

Blood outgrowth smooth muscle cells (BO-SMCs) offer the means to study vascular cells without the requirement for surgery providing opportunities for drug discovery, tissue engineering, and personalized medicine. However, little is known about these cells which meant that their therapeutic potential remains unexplored. Our objective was to investigate for the first time the ability of BO-SMCs and vessel-derived smooth muscle cells to sense the thromboxane mimetic U46619 by measuring intracellular calcium elevation and contraction. U46619 (10-6 M) increased cytosolic calcium in BO-SMCs and vascular smooth muscle cells (VSMCs) but not in fibroblasts. Increased calcium signal peaked between 10 and 20 s after U46619 in both smooth muscle cell types. Importantly, U46619 (10-9 to 10-6 M) induced concentration-dependent contractions of both BO-SMCs and VSMCs but not in fibroblasts. In summary, we show that functional responses of BO-SMCs are in line with VSMCs providing critical evidence of their application in biomedical research.

8.
Sci Rep ; 11(1): 4336, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619326

RESUMO

Pulmonary arterial hypertension (PAH) is an incurable disease, although symptoms are treated with a range of dilator drugs. Despite their clinical benefits, these drugs are limited by systemic side-effects. It is, therefore, increasingly recognised that using controlled drug-release nanoformulation, with future modifications for targeted drug delivery, may overcome these limitations. This study presents the first evaluation of a promising nanoformulation (highly porous iron-based metal-organic framework (MOF); nanoMIL-89) as a carrier for the PAH-drug sildenafil, which we have previously shown to be relatively non-toxic in vitro and well-tolerated in vivo. In this study, nanoMIL-89 was prepared and charged with a payload of sildenafil (generating Sil@nanoMIL-89). Sildenafil release was measured by Enzyme-Linked Immunosorbent Assay (ELISA), and its effect on cell viability and dilator function in mouse aorta were assessed. Results showed that Sil@nanoMIL-89 released sildenafil over 6 h, followed by a more sustained release over 72 h. Sil@nanoMIL-89 showed no significant toxicity in human blood outgrowth endothelial cells for concentrations up to100µg/ml; however, it reduced the viability of the human pulmonary artery smooth muscle cells (HPASMCs) at concentrations > 3 µg/ml without inducing cellular cytotoxicity. Finally, Sil@nanoMIL-89 induced vasodilation of mouse aorta after a lag phase of 2-4 h. To our knowledge, this study represents the first demonstration of a novel nanoformulation displaying delayed drug release corresponding to vasodilator activity. Further pharmacological assessment of our nanoformulation, including in PAH models, is required and constitutes the subject of ongoing investigations.


Assuntos
Estruturas Metalorgânicas , Inibidores da Fosfodiesterase 5/administração & dosagem , Hipertensão Arterial Pulmonar/tratamento farmacológico , Citrato de Sildenafila/administração & dosagem , Nanomedicina Teranóstica , Animais , Aorta/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Cinética , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Hipertensão Arterial Pulmonar/etiologia , Citrato de Sildenafila/química , Citrato de Sildenafila/farmacocinética , Análise Espectral , Vasodilatadores/administração & dosagem , Vasodilatadores/química , Vasodilatadores/farmacocinética
10.
Hypertension ; 71(2): 297-305, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295852

RESUMO

Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARß/δ (peroxisome proliferator-activated receptor-ß/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARß/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARß/δ axis as a therapeutic target in renal disease.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Rim/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Circulação Renal/efeitos dos fármacos , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Rim/irrigação sanguínea , Camundongos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA