Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Math Biol ; 85(6): 51, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142885

RESUMO

Tumor immunotherapy aims to maintain or enhance the killing capability of CD8+ T cells to clear tumor cells. The tumor-immune interactions affect the function of CD8+ T cells. However, the effect of phenotype heterogeneity of a tumor mass on the collective tumor-immune interactions is insufficiently investigated. We developed the cellular-level computational model based on the principle of cellular Potts model to solve the case mentioned above. We considered how asymmetric division and glucose distribution jointly regulated the transient changes in the proportion of proliferating/quiescent tumor cells in a solid tumor mass. The evolution of a tumor mass in contact with T cells was explored and validated by comparing it with previous studies. Our modeling exhibited that proliferating/quiescent tumor cells, exhibiting distinct anti-apoptotic and suppressive behaviors, redistributed within the domain accompanied by the evolution of a tumor mass. Collectively, a tumor mass prone to a quiescent state weakened the collective suppressive functions of a tumor mass on cytotoxic T cells and triggered a decline of apoptosis of tumor cells. Although quiescent tumor cells did not sufficiently do their inhibitory functions, the possibility of long-term survival was improved due to their interior location within a mass. Overall, the proposed model provides a useful framework to investigate collective-targeted strategies for improving the efficiency of immunotherapy.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Conceitos Matemáticos , Neoplasias/terapia , Linfócitos T CD8-Positivos , Simulação por Computador , Fenótipo , Microambiente Tumoral
2.
PLoS One ; 18(2): e0274054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757955

RESUMO

Image contrast enhancement uses the object intensity transformation function to maximize the amount of information to enhance an image. In this paper, the image enhancement problem is regarded as an optimization problem, and the particle swarm algorithm is used to obtain the optimal solution. First, an improved particle swarm optimization algorithm is proposed. In this algorithm, individual optimization, local optimization, and global optimization are used to adjust the particle's flight direction. In local optimization, the topology is used to induce comparison and communication between particles. The sparse penalty term in speed update formula is added to adjust the sparsity of the algorithm and the size of the solution space. Second, the three channels of the color images R, G, and B are represented by a quaternion matrix, and an improved particle swarm algorithm is used to optimize the transformation parameters. Finally, contrast and brightness elements are added to the fitness function. The fitness function is used to guide the particle swarm optimization algorithm to optimize the parameters in the transformation function. This paper verifies via two experiments. First, improved particle swarm algorithm is simulated and tested. By comparing the average values of the four algorithms under the three types of 6 test functions, the average value is increased by at least 15 times in the single-peak 2 test functions: in the multi-peak and multi-peak fixed-dimension 4 test functions, this paper can always search for the global optimal solution, and the average value is either the same or at least 1.3 times higher. Second, the proposed algorithm is compared with other evolutionary algorithms to optimize contrast enhancement, select images in two different data sets, and calculate various evaluation indicators of different algorithms under different images. The optimal value is the algorithm in this paper, and the performance indicators are at least a 5% increase and a minimum 15% increase in algorithm running time. Final results show that the effects the proposed algorithm have obvious advantages in both subjective and qualitative aspects.


Assuntos
Algoritmos , Aumento da Imagem
3.
IEEE Trans Pattern Anal Mach Intell ; 44(1): 100-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750803

RESUMO

Exploiting multi-scale representations is critical to improve edge detection for objects at different scales. To extract edges at dramatically different scales, we propose a bi-directional cascade network (BDCN) architecture, where an individual layer is supervised by labeled edges at its specific scale, rather than directly applying the same supervision to different layers. Furthermore, to enrich multi-scale representations learned by each layer of BDCN, we introduce a scale enhancement module (SEM), which utilizes dilated convolution to generate multi-scale features, instead of using deeper CNNs. These new approaches encourage the learning of multi-scale representations in different layers and detect edges that are well delineated by their scales. Learning scale dedicated layers also results in a compact network with a fraction of parameters. We evaluate our method on three datasets, i.e., BSDS500, NYUDv2, and Multicue, and achieve ODS F-measure of 0.832, 2.7 percent higher than current state-of-the-art on the BSDS500 dataset. We also applied our edge detection result to other vision tasks. Experimental results show that, our method further boosts the performance of image segmentation, optical flow estimation, and object proposal generation.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizagem
4.
Int J Numer Method Biomed Eng ; 38(9): e3633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703086

RESUMO

Low response rate limits the effective application of immunotherapy, in which the interactions between tumor cells and immune cells play a significant role. The strength of regulation could be mediated by extracellular matrix (ECM) fibers, which is still insufficiently investigated. In the study, the cellular potts model was utilized to explore the role of morphological properties of ECM in tumor-immune interactions. It was observed that high-density random ECM fibers delayed the interaction between tumor cells and T cells. Moreover, the tumor-immune interactions were ECM morphology-specific. Radial ECM fibers exhibited weaker inhibitory role in the process of contact between tumor cells and T cells. This study provided the useful mechanism of tumor-immune interactions from the viewpoint of morphological effect of ECM fibers, facilitating improving the efficiency of immunotherapy.


Assuntos
Matriz Extracelular , Neoplasias , Contagem de Células , Humanos , Imunidade
5.
IEEE Trans Image Process ; 30: 6013-6023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181542

RESUMO

Panoptic segmentation (PS) is a complex scene understanding task that requires providing high-quality segmentation for both thing objects and stuff regions. Previous methods handle these two classes with semantic and instance segmentation modules separately, following with heuristic fusion or additional modules to resolve the conflicts between the two outputs. This work simplifies this pipeline of PS by consistently modeling the two classes with a novel PS framework, which extends a detection model with an extra module to predict category- and instance-aware pixel embedding (CIAE). CIAE is a novel pixel-wise embedding feature that encodes both semantic-classification and instance-distinction information. At the inference process, PS results are simply derived by assigning each pixel to a detected instance or a stuff class according to the learned embedding. Our method not only demonstrates fast inference speed but also the first one-stage method to achieve comparable performance to two-stage methods on the challenging COCO benchmark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA