Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(14): 8453-8462, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343537

RESUMO

In the present work, we have systematically investigated the dual hydrogen-bonded system 2Z,2'Z-3,3'-(4,4'-methylenebis(4,1-phenylene)bis(azanediyl)bis(1,3-diphenylprop-2-en-1-one)) (abbreviated as L) utilizing quantum chemistry methods, in which the excited-state intramolecular proton transfer (ESIPT) does not conform to the usual stereotype but proceeds along the weakened intramolecular hydrogen bonds (IHBs). Two primary configurations were confirmed to coexist in the ground state (i.e., anti-L and syn-L) by calculating the Boltzmann distribution in three different solvents. Based on the cardinal geometrical parameters involved in IHBs and the interaction region indicator (IRI) isosurface, it can be revealed that the dual IHBs of L were both weakened upon photoexcitation, not least the N1-H2⋯O3 IHB was utterly destroyed in the excited state. The proton-transfer process of anti and syn in three solvents with different polarities has been analyzed by constructing S0- and S1-state potential energy surfaces (PESs). It can be concluded that only the single proton transfer behavior along N1-H2⋯O3 occurs in the S1 state, and the corresponding energy barrier is gradually enlarged with increasing solvent polarity. To further expound the weakened IHB-induced ESIPT mechanism, the scanned PESs connecting the transition state (TS) structures and the initial forms indicate that the ESIPT process is infeasible without the appropriate structural torsion. Our work not only unveils the extraordinary ESIPT process of L, but also complements the results obtained from previous experiments.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124714, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38941752

RESUMO

In this contribution, four derivatives of 5'-(para-R-Phenylene) vinyl-2-(2'-hydroxyphenyl) benzoxazole (PVHBO) were ingeniously designed by introducing two electron-withdrawing substituents and two electron-donating substituents, aiming to investigate the influence of different substituents on the photophysical properties of PVHBO and the excited state intramolecular proton transfer (ESIPT) process via the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. By utilizing the geometric parameters and the simulated infrared (IR) spectra, we compared the intramolecular hydrogen bonds (IHBs) strengths in the S0 and S1 states of the molecules. Via conducting the hole-electron analysis, the reduction in fluorescence intensity for the enol and keto forms of PVHBO, PVHBO-MeO, and PVHBO-NH2 were also well explicated. Besides, the potential energy curves (PECs) and corresponding transition state (TS) structures for both S0 and S1 states were also constructed to accurately obtain energy barriers of forward and reversed proton transfer processes. The calculated absorption and fluorescence spectra also show that PVHBO-NH2 has the largest Stokes shifts of 158 nm and 219 nm in both the enol and keto states, with a significant increase in fluorescence intensity observed upon the induction of electron-withdrawing groups. Through this work, it can provide the theoretical basis for the design of novel luminescent materials.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121449, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660153

RESUMO

In the present work, four probe molecules for detecting hydrazine have been designed based on the 2-(4-Acetoxy-3-benzothiazole-2-yl-phenyl)-4-methyl-thiazole- 5-carboxylic acid ethyl ester (HP1) to investigate the influence of the amino and cyano groups on the excited-state intramolecular proton transfer (ESIPT) behavior and photophysical properties. The changes in hydrogen bond strength indicate that the intramolecular hydrogen bond of all probe products is enhanced upon photoexcitation. Frontier molecular orbitals (FMOs) and natural bond orbital (NBO) reveal the driving force of ESIPT. In addition, the potential energy curves and transition state theory explain the reason for the single fluorescence phenomenon in the experiment. The simulated absorption and fluorescence spectra of HP1 and its product (HPP1) are completely consistent with the experimental results, which also verify the viewpoint. Meanwhile the cyano derivative HPP4 exhibits a larger Stokes-shift (201 nm) than that of HPP1 (145 nm) and has the same low energy barrier as HPP1. These excellent properties allow HPP4 to be a fluorescent probe with superior performance than the original molecule. In conclusion, this work can provide a theoretical basis for the design and synthesis of more sensitive fluorescent probes for the detection of hydrazine.


Assuntos
Luminescência , Prótons , Benzotiazóis/química , Ácidos Carboxílicos , Proteínas Cromossômicas não Histona , Corantes Fluorescentes/química , Hidrazinas , Modelos Moleculares
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120660, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34857463

RESUMO

In this work, the effects of atomic electronegativity (O, S, and Se atoms) on the competitive double excited-state intramolecular proton transfer (ESIPT) reactions and photophysical characteristics of uralenol (URA) were systematically explored by using the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated hydrogen bond parameters, infrared (IR) vibrational spectra, reduced density gradient (RDG) scatter plots, interaction region indicator (IRI) isosurface and topology parameters have confirmed the six-membered intramolecular hydrogen bond (IHB) O4H5…O3 is the stronger one in all the three studied compounds. Subsequently, frontier molecular orbitals (FMOs) and natural bond orbital (NBO) population analysis essentially uncover that the electron redistribution has induced the ESIPT process. Besides, the constructed potential energy curves (PECs) have indicated that the ESIPT process prefers to occur along the O4H5…O3 rather than the O1H2…O3 and the proton-transfer energy barrier is gradually decreased with the weakening of atomic electronegativity from URA to URA-S and URA-Se. In a conclusion, the attenuating of atomic electronegativity has enhanced the IHBs of URA and thereby promoting the ESIPT reaction, which is helpful for further developing novel fluorophores based on ESIPT behavior in the future.


Assuntos
Flavonoides , Prótons , Ligação de Hidrogênio , Modelos Moleculares
5.
ACS Omega ; 7(17): 14848-14855, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557698

RESUMO

Two novel compounds (HQS and HQSe) with excited-state intramolecular proton transfer (ESIPT) properties were designed based on the compound 2-(2-hydroxy-3-ethoxyphenyl)-3H-quinazolin-4-one (HQ). The parameters related to the ESIPT properties and electronic spectra of HQ and its derivatives were calculated using density functional theory and time-dependent density functional theory methods. The obtained geometric configurations, infrared vibrational spectra, and reduced density gradient scatter plots have shown that the intramolecular hydrogen bond O1···H1-N1 has been weakened upon photoexcitation. Moreover, from the scanned potential energy curves, it can be found that the ESIPT processes of the three compounds have no energy barriers. It is noteworthy that HQS and HQSe can strongly absorb light in the UVA region (∼340 nm) and exhibit weak fluorescence emission in the visible light region, which comes from the keto configuration. The special optical properties of HQS and HQSe can promote their application as potential sunscreen agents.

6.
Materials (Basel) ; 15(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454589

RESUMO

To reveal the influence of different substituents on the excited-state intramolecular proton transfer (ESIPT) process and photophysical properties of 4'-N, N-dimethylamino-3-hydroxyflavone (DMA3HF), two novel molecules (DMA3HF-CN and DMA3HF-NH2) were designed by introducing the classical electron-withdrawing group cyano (-CN) and electron-donating group amino (-NH2). The three molecules in the acetonitrile phase were systematically researched by applying the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The excited-state hydrogen bond enhancement mechanism was confirmed, and the hydrogen bond intensity followed the decreasing order of DMA3HF-NH2 > DMA3HF > DMA3HF-CN, which can be explained at the electronic level by natural bond orbital, fuzzy bond order, and frontier molecular orbital analyses. Moreover, we found from the electronic spectra that the fluorescence intensity of the three molecules in keto form is relatively strong. Moreover, the calculated absorption properties indicated that introducing the electron-withdrawing group -CN could significantly improve the absorption of DMA3HF in the ultraviolet band. In summary, the introduction of an electron-donating group -NH2 can promote the ESIPT reaction of DMA3HF, without changing the photophysical properties, while introducing the electron-withdrawing group -CN can greatly improve the absorption of DMA3HF in the ultraviolet band, but hinders the occurrence of the ESIPT reaction.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121559, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777226

RESUMO

In this present work, four novel molecules (BPN, BPNS, BPS, and BPSN), possessing excited-state intramolecular proton transfer (ESIPT) characteristics, were designed to quantify the impacts of substituent effects on their photophysical properties. By exploring the primary geometrical parameters concerning hydrogen bonds, it should be noticed that the intramolecular hydrogen bonds (IHBs) of the studied molecules have been strengthened at S1 state. Infrared vibrational spectra analysis illustrates that adding electron-donating group thiophene to the proton donor side can weaken the IHBs in comparison to the electron-withdrawing group pyridine. Through investigating the absorption and fluorescence spectra, it can be clearly found that the maximum absorption peaks of the studied molecules are all located in the UVA region, and their regions of fluorescence peaks are harmless to human skin. Furthermore, considering the light intensity factor, it can be concluded that BPNS is the most potential to be used as UV absorbers in the studied molecules. This work investigates the effects of the positions and types of substituent groups on photophysical properties of 2-(2'-hydroxyphenyl) benzazoles derivatives, which can help design and exploit novel UV absorbers.


Assuntos
Prótons , Teoria Quântica , Elétrons , Humanos , Ligação de Hidrogênio , Espectrofotometria Infravermelho
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120496, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34689094

RESUMO

In this contribution, the solvent effects on the excited-state intramolecular proton transfer (ESIPT) and photophysical properties of 2-(4-(diphenylamine)phenyl)-3-hydroxy-4H-chromen-4-one (3HF-OH, Dyes Pigm. 2021, 184, 108865) in the dimethylsulfoxide (DMSO), acetonitrile (ACN), dichloromethane (DCM) and cyclohexane (CYH) phases have been comprehensively explored by using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The obtained bond lengths, bond angles and infrared (IR) vibration analysis related to the intramolecular hydrogen bond (IHB) reveal that the IHB intensity of 3HF-OH is weakened as the solvent polarity increased. Besides, the ESIPT process changes from the endothermic to the exothermic with the enlargement of solvent polarity, and the reaction barrier increases gradually. It is worth noting that the molecular configuration torsion of 3HF-OH is gradually intensified with the decline of solvent polarity, which aggravates the twisted intramolecular charge transfer (TICT) state and thereby partially attenuates the short-wavelength fluorescence of 3HF-OH in the CYH solvent. In addition to these, the structural torsion has restrained the occurrence of the ESIPT behavior by means of elevating the energy barrier. This theoretical research would provide valuable guidance for regulating and controlling the photophysical behavior of compounds via the strategy of changing solvent polarity.


Assuntos
Cloreto de Metileno , Prótons , Ligação de Hidrogênio , Conformação Molecular , Solventes
9.
J Mol Model ; 28(6): 155, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579707

RESUMO

In this work, the pharmaceutical cocrystals xanthotoxin-para-aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) were systematically investigated in the gas and water phases by using the quantum chemical approach. The weak intermolecular interactions have been estimated and the O1…H4 (O1…H5) intermolecular hydrogen bond (IHB) with moderate intensity and partial covalent natures was confirmed based on the computed structural parameters, topology analysis, and reduced density gradient (RDG) isosurfaces. The electrophilic and nucleophilic reactivities of different positions associated with intermolecular interactions in XT, PABA, and OA were predicted by plotting the molecular electrostatic potential (MESP) diagrams. The calculated natural bond orbital (NBO) population analysis has quantitatively unveiled the intrinsic reason for the variations in weak intermolecular interactions within XT-PABA and XT-OA cocrystals, from the gas phase to the water phase. Besides, the frontier molecular orbitals (FMOs), Fukui function, and various global reactivity descriptors were computed to measure the chemical reactivity of all the investigated molecular systems. The XT-PABA and XT-OA cocrystals explored in this work could be regarded as valuable exemplar systems to design and synthesize the high-efficiency pharmaceutical cocrystals in the experiment.


Assuntos
Ácido 4-Aminobenzoico , Metoxaleno , Ácido 4-Aminobenzoico/química , Preparações Farmacêuticas , Relação Estrutura-Atividade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA