RESUMO
Structure determines the properties. However, whether electronic structure determines geometry or geometry determines electronic structure seems a philosophical question in a chicken and egg situation, which remains unclear. In this work, by applying density functional theory (DFT) and DMRG(4n,4n)-CASSCF methods, theoretical investigation suggested that the dual antiaromaticity in cyclo[2n]carbons with even n should be attributed to the electron correlation effect, instead of decreased geometric symmetry, which actually exists in all cyclo[2n]carbon molecules and does not point out the essence. Such dual antiaromaticity can be conceptualized as electron correlation-stabilized dual antiaromaticity. Results also showed that DFT is reliable for cyclocarbons larger than C14, but we should be careful when applying it to smaller ones. DFT failed to give the correct structure of C6 compared with density matrix renormalization group results.
RESUMO
A series of novel [Ir(tpy)(btp)Cl]+ complexes (Ir1-Ir4) have been reported to show excellent performance as photosensitizers. The introduction of electron-withdrawing groups increases visible light absorption and the lifetime of triplet states. To improve the photophysical properties, we theoretically design Ir5-Ir9 with electron-withdrawing groups (Cl, F, COOH, CN and NO2). Surprisingly, our findings indicate that the photosensitizer performance does not strictly increase with the electron-withdrawing ability of the substituents. In this work, the geometric and electronic structures, transition features, and photophysical properties of Ir1-Ir9 are investigated. The natural transition orbital (NTO) analysis indicates that the T1 and T2 states play a role in the photochemical pathways. Ultraviolet-visible (UV-vis) absorption spectra and charge-transfer spectra (CTS) have been investigated to show that the introduction of electron-withdrawing groups not only improves the visible light absorbing ability, but also changes the nature of electron excitation, providing a future molecular design strategy for similar series of photosensitizers. The rates of (reverse) intersystem crossing and the Huang-Rhys factors are evaluated to interpret the experimental results within the framework of Marcus theory. For complexes Ir1-Ir7, the introduction of electron-withdrawing groups leads to a lower efficiency of reverse intersystem crossing and a strong non-radiative process T2 â T1, resulting in a long triplet lifetime and excellent performance as a photosensitizer. Furthermore, some newly designed complexes (Ir7-Ir9) show great potential as thermally activated delayed fluorescence emitters, contrary to our initial expectations.
RESUMO
The N-N bond structure of the key intermediate in the reported catalytic ammonia production (Nature 2019, 568, 536-540) should be described as containing a N-N double bond, instead of containing a N-N triple bond. Two 3c-delocalized bonds are found in this fragment. The analysis of the oxidation states reveal that the N reduction is achieved mainly during the step of N-N bond cleavage; SmI2-ROH reduction steps reduce Mo atoms and add protons to N atoms without changing their oxidation states. The catalytic cycle is thermodynamically investigated using the DFT method, revealing that the rate-determining step is the reductive formation of the first N-H bond and the nitrogen reduction occurs mainly in the N-N cleavage step. In addition, linear relationships between vibrational stretching frequencies, effective nuclear charges (Z*), and bond dissociation energy (E0) of a Mo-N bond are also developed.
RESUMO
A series of functional platinum(II) complexes (Pt1-Pt3), which present high activity in four-photon absorption, in vivo imaging, and precise cancer therapy, as previously reported by the experimental work of Zhang et al. (Inorg. Chem. 2021, 60, 2362-2371), are computationally investigated in the article. We find that after the complex goes through four-photon absorption to the S1 state, it undergoes intersystem crossing to the T2 state and eventually reaches the T1 state through internal conversion. On the T1 state, both radiative and nonradiative decay to S0 exit. The radiative decay forms the basis for the phosphorescence imaging in tissues as reported in the original paper. In addition, the nonradiative decay can simultaneously generate cytotoxic singlet oxygen by the excited energy transfer process, also known as triplet oxygen's quenching of triplet states. We conclude that the phosphorescence property as well as the photosensitizer character jointly bring high activity of in vivo imaging and photodynamic therapy to these complexes.
Assuntos
Fotoquimioterapia , Platina , Transferência de Energia , Fármacos Fotossensibilizantes , Oxigênio SingleteRESUMO
Immotile spermatids produced in the testis must undergo a series of poorly understood morphological, physiological and biochemical processes called sperm activation to become motile, fertilization-competent spermatozoa. In Caenorhabditis elegans, the spe-8 group contains sperm-specific genes active in both males and hermaphrodites, although their activity is required only for hermaphrodite self-sperm activation. The activating signal upstream of the SPE-8 signaling cascade remains unknown. Here, we show that the micronutrient zinc is sufficient to trigger sperm activation in vitro, and that extracellular zinc induces the intracellular redistribution of labile zinc. We demonstrate that other activating signals promote the similar redistribution of labile zinc, indicating that zinc might have first and/or second messenger roles during sperm activation. Moreover, zinc-induced sperm activation is SPE-8 pathway dependent. Labile zinc was enriched in the spermatheca, the normal site for self-sperm activation in hermaphrodites. High levels of zinc were also found in the secretory cells in the male gonad, suggesting that zinc might be secreted from these cells during copulation and become a component of seminal fluid, to modulate sperm activation post-copulation. These data indicate that zinc regulates sperm activation in both male and hermaphrodite C. elegans, a finding with important implications for understanding hermaphroditic evolution.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Micronutrientes/metabolismo , Espermatozoides/fisiologia , Zinco/farmacologia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Masculino , Microscopia de Fluorescência , Neurônios/metabolismo , Transdução de Sinais , Temperatura , Zinco/metabolismoRESUMO
Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated.
Assuntos
Nematoides/fisiologia , Peptídeo Hidrolases/metabolismo , Serpinas/fisiologia , Espermatozoides/fisiologia , Sequência de Aminoácidos , Animais , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Serpinas/química , Espermátides/fisiologia , Espermatozoides/metabolismoRESUMO
The fatigue performance of the asphalt mixture was the main focus of this study, with five typical factors-phase angle, cumulative dissipated energy, failure strain, failure stiffness modulus, and strain rate-identified as potential design indexes. The effect of asphalt content on the parameters under different gradation and stress ratios was tested. It was observed that the selected parameters exhibited varying levels of sensitivity and relevance to the fatigue behavior of asphalt mixtures under cyclic loads. By comparison, the strain rate proved sensitive to the asphalt content and independent of the other parameters, namely aggregate gradations and stress ratio, thus establishing the strain rate as a critical design index based on fatigue performance. On this basis, a design method based on the fatigue performance for the asphalt mixtures is herein proposed. It was confirmed that the asphalt mixture formulated using the proposed method exhibited enhanced fatigue endurance compared to those designed using the conventional method.
RESUMO
Of major concern is the lack of correlation between the material design and structural function of asphalt pavement in China. The objective of this paper is to identify the layer in asphalt pavement where permanent deformation occurs most seriously and to propose a control index for that layer's asphalt mixture. The permanent deformation of each layer was determined through the utilization of thickness measurements obtained from field cores. The results indicate that the reduction in thickness is more significant in the driving lane than in the ridge band and shoulder. This phenomenon can be attributed to the intensified densification and shearing deformation that arise from the combined impacts of recurrent axle loads and high temperatures. Compared to surface and base layers, the bearing layer is the primary area of concern for permanent deformation in asphalt pavement. Therefore, it is imperative to incorporate the ability of bearing-layer asphalt mixture to withstand permanent deformation as a crucial design parameter. The dynamic modulus of the bearing-layer asphalt mixture is significantly influenced by the type of asphalt, gradation, and asphalt content, compared to other design parameters. Based on the relationship established between dynamic modulus and dynamic stability, with creep rate as the intermediate term, a control standard was proposed to evaluate the permanent deformation of the bearing-layer asphalt mixture. This study can provide reasonable and effective guidance for prolonging pavement life and improving pavement performance.
RESUMO
Two zinc-boron clusters (ZnBeB11(CN)12 and ZnBeB23(CN)22) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reached in the previous study that a +3 oxidation state is present. The semi-empirical LOBA method points out this contrast, which is demonstrated via various wavefunction analysis approaches. No unpaired electrons are observed on zinc atoms nor is there a spin density difference distribution, revealing that the zinc atoms have a fully occupied 3d10 electron shell. Density of states studies give the same conclusion, and they further show that zinc atoms adopt an sp2-hybrid type during bonding. From the perspective of energy, we advise that the electron affinity energy is not a reliable way of evaluating the oxidation state. Instead, binding energy calculations and constrained DFT are applicable, and these also support the presence of Zn2+. The simulated XPS peaks are consistent with the experimental data for Zn(II) measured in ZnS. Lastly, the ETS-NOCV method is adopted to give insights into the bonding structures between zinc atoms and boron clusters. It is suggested that future theoretical research into similar problems is analyzed more cautiously to avoid potentially misleading other researchers.
RESUMO
BACKGROUND: Ascaris suum (large roundworm of pigs) is a parasitic nematode that causes substantial losses to the meat industry. This nematode is suitable for biochemical studies because, unlike C. elegans, homogeneous tissue samples can be obtained by dissection. It has large sperm, produced in great numbers that permit biochemical studies of sperm motility. Widespread study of A. suum would be facilitated by more comprehensive genome resources and, to this end, we have produced a gonad transcriptome of A. suum. RESULTS: Two 454 pyrosequencing runs generated 572,982 and 588,651 reads for germline (TES) and somatic (VAS) tissues of the A. suum gonad, respectively. 86% of the high-quality (HQ) reads were assembled into 9,955 contigs and 69,791 HQ reads remained as singletons. 2.4 million bp of unique sequences were obtained with a coverage that reached 16.1-fold. 4,877 contigs and 14,339 singletons were annotated according to the C. elegans protein and the Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. Comparison of TES and VAS transcriptomes demonstrated that genes participating in DNA replication, RNA transcription and ubiquitin-proteasome pathways are expressed at significantly higher levels in TES tissues than in VAS tissues. Comparison of the A. suum TES transcriptome with the C. elegans microarray dataset identified 165 A. suum germline-enriched genes (83% are spermatogenesis-enriched). Many of these genes encode serine/threonine kinases and phosphatases (KPs) as well as tyrosine KPs. Immunoblot analysis further suggested a critical role of phosphorylation in both testis development and spermatogenesis. A total of 2,681 A. suum genes were identified to have associated RNAi phenotypes in C. elegans, the majority of which display embryonic lethality, slow growth, larval arrest or sterility. CONCLUSIONS: Using deep sequencing technology, this study has produced a gonad transcriptome of A. suum. By comparison with C. elegans datasets, we identified sets of genes associated with spermatogenesis and gonad development in A. suum. The newly identified genes encoding KPs may help determine signaling pathways that operate during spermatogenesis. A large portion of A. suum gonadal genes have related RNAi phenotypes in C. elegans and, thus, might be RNAi targets for parasite control.
Assuntos
Ascaris suum/genética , Transcriptoma , Animais , Caenorhabditis elegans/genética , Mapeamento de Sequências Contíguas , Bases de Dados Factuais , Células Germinativas/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Fosforilação , Interferência de RNA , Ducto Deferente/metabolismoRESUMO
Accurate Li-ion battery modeling is integral to the design of effective battery management systems in electric vehicles. However, the voltage-current (U-I) characteristic of Li-ion batteries presents strong nonlinearity. The application of fractional-order models to create lower-order models to represent physical systems (e.g., the battery characteristics for the state of charge estimation) is interesting and timely. In this paper, a novel fractional variable-order equivalent circuit model (FVO-ECM) is proposed to represent the nonlinear U-I characteristic of Li-ion batteries; its parameter identification is achieved and verified by charge and discharge tests. Compared with the integral-order equivalent circuit model and the fractional constant-order model, the proposed FVO-ECM can identify battery nonlinear characteristics most accurately.
RESUMO
In this paper, the fractional-order modeling of multiple groups of lithium-ion batteries with different states is discussed referring to electrochemical impedance spectroscopy (EIS) analysis and iterative learning identification method. The structure and parameters of the presented fractional-order equivalent circuit model (FO-ECM) are determined by EIS from electrochemical test. Based on the working condition test, a P-type iterative learning algorithm is applied to optimize certain selected model parameters in FO-ECM affected by polarization effect. What's more, considering the reliability of structure and adaptiveness of parameters in FO-ECM, a pre-tested nondestructive 1 / f noise is superimposed to the input current, and the correlative information criterion (CIC) is proposed by means of multiple correlations of each parameter and confidence eigen-voltages from weighted co-expression network analysis method. The tested batteries with different state of health (SOH) can be successfully simulated by FO-ECM with rarely need of calibration when excluding polarization effect. Particularly, the small value of CIC α indicates that the fractional-order α is constant over time for the purpose of SOH estimation. Meanwhile, the time-varying ohmic resistance R 0 in FO-ECM can be regarded as a wind vane of SOH due to the large value of CIC R 0 . The above analytically found parameter-state relations are highly consistent with the existing literature and empirical conclusions, which indicates the broad application prospects of this paper.
RESUMO
Previously, we have shown that paraspeckle protein 1 (PSPC1), a protein component of paraspeckles that was involved in cisplatin-induced DNA damage response (DDR), probably functions at the G1/S checkpoint. In the current study, we further examined the role of PSPC1 in another DNA-damaging agent, methyl methanesulfonate (MMS)-induced DDR, in particular, focusing on MMS-induced apoptosis in HeLa cells. First, it was found that MMS treatment induced the expression of PSPC1. While MMS treatment alone can induce apoptosis, depletion of PSPC1 expression using siRNA significantly increased the level of apoptosis following MMS exposure. In contrast, overexpressing PSPC1 decreased the number of apoptotic cells. Interestingly, morphological observation revealed that many of the MMS-treated PSPC1-knockdown cells contained two or more nuclei, indicating the occurrence of mitotic catastrophe. Cell cycle analysis further showed that depletion of PSPC1 caused more cells entering the G2/M phase, a prerequisite of mitosis catastrophe. On the other hand, over-expressing PSPC1 led to more cells accumulating in the G1/S phase. Taken together, these observations suggest an important role for PSPC1 in MMS-induced DDR, and in particular, depletion of PSPC1 can enhance MMS-induced apoptosis through mitotic catastrophe.
Assuntos
Antineoplásicos Alquilantes/farmacologia , Metanossulfonato de Metila/farmacologia , Mitose/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Apoptose , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
The dynamic polar polymers actin filaments and microtubules are usually employed to provide the structural basis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the ability to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly understood. Here we show that Ca(2+) oscillations induced by the Ca(2+) release from intracellular Ca(2+) store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suum sperm activation. The chelation of cytosolic Ca(2+) suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing exogenous Ca(2+) into sperm cells. Ca(2+) promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca(2+) promotes MSP disassembly by activating Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase calcineurin. In addition, Ca(2+)/camodulin activity is required for the fusion of sperm-specifi c membranous organelle with the plasma membrane, a regulated exocytosis required for sperm motility. Thus, Ca(2+) plays multifunctional roles during sperm activation in Ascaris suum.