Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem ; 16(4): 624-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225270

RESUMO

Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.


Assuntos
Desoxirribodipirimidina Fotoliase , Humanos , Animais , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Triptofano/química , Elétrons , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Transporte de Elétrons , Cristalografia por Raios X
2.
ACS Omega ; 8(49): 47187-47200, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107948

RESUMO

A crucial role in the regulation of DNA replication is played by the highly conserved CDC kinase. The CDC7 kinase could serve as a target for therapeutic intervention in cancer. The primary heterocyclic substance is pyrazole, and its derivatives offer great potential as treatments for cancer cell lines. Here, we synthesized the two pyrazole derivatives: 4-(2-(4-chlorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-1) and 4-(2-(2,4-difluorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-2). The structural confirmation of both the compounds at the three-dimensional level is characterized using single crystal X-ray diffraction and density functional theory. Furthermore, the in silico chemical biological properties were derived using molecular docking and molecular dynamics (MD) simulations. PYRA-1 and PYRA-2 crystallize in the P-1 (a = 8.184(9), b = 14.251(13), c = 15.601(15), α = 91.57(8), ß = 97.48(9), 92.67(9), V = 1801.1(3) 3, and Z = 2) and P21/n (a = 14.8648(8), b = 8.5998(4), c = 15.5586(8), ß = 116.47(7), V = 1780.4(19) 3, and Z = 4), space groups, respectively. In both PYRA-1 and PYRA-2 compounds, C-H···O intermolecular connections are common to stabilize the crystal structure. In addition, short intermolecular interactions stabilizes with C-H···π and π-π stacking. Crystal packing analysis was quantified using Hirshfeld surface analysis resulting in C···H, O···H, and H···H contacts in PYRA-1 exhibiting more contribution than in PYRA-2. The conformational stabilities of the molecules are same in the gas and liquid phases (water and DMSO). The docking scores measured for PYRA-1 and PYRA-2 with CDC7 kinase complexes are -5.421 and -5.884 kcal/mol, respectively. The MD simulations show that PYRA-2 is a more potential inhibitor than PYRA-1 against CDC7 kinase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA