Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 19(1): 424, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064330

RESUMO

BACKGROUND: pressurized intraperitoneal aerosol chemotherapy (PIPAC), with or without electrostatic precipitation (ePIPAC), was recently introduced in the treatment of peritoneal metastases (PM) from ovarian cancer (OC). Preliminary clinical data are promising, but several methodological issues as well the anticancer efficacy of PIPAC remain unaddressed. Here, we propose a rat ePIPAC model that allows to study these issues in a clinically relevant, reproducible, and high throughput model. METHODS: laparoscopy and PIPAC were established in healthy Wistar rats. Aerosol properties were measured using laser diffraction spectrometry based granulometric analyses. Electrostatic precipitation was accomplished using a commercially available generator (Ultravision™). A xenograft model of ovarian PM was created in athymic rats using intraperitoneal (IP) injection of SKOV-3 luciferase positive cells. Tumor growth was monitored weekly by in vivo bioluminescence imaging. RESULTS: PIPAC and electrostatic precipitation were well tolerated using a capnoperitoneum of 8 mmHg. All rats survived the (e)PIPAC procedure and no gas or aerosol leakage was observed over the entire procedure. With an injection pressure of 20 bar, granulometry showed a mean droplet diameter (D(v,0.5)) of 47 µm with a flow rate of 0.5 mL/s, and a significantly lower diameter (30 µm) when a flow rate of 0.8 mL/s was used. Experiments using IP injection of SKOV-3 luciferase positive cells showed that after IP injection of 20 × 106 cells, miliary PM was observed in all animals. PIPAC was feasible and well supported in these tumor bearing animals. CONCLUSIONS: we propose a reproducible and efficient rodent model to study PIPAC and ePIPAC in OC xenografts with widespread PM. This model allows to characterize and optimize pharmacokinetic and biophysical parameters, and to evaluate the anti-cancer efficacy of (e)PIPAC treatment.


Assuntos
Antineoplásicos/administração & dosagem , Laparoscopia/métodos , Neoplasias Ovarianas/terapia , Neoplasias Peritoneais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Aerossóis/administração & dosagem , Animais , Linhagem Celular Tumoral , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Feminino , Humanos , Injeções Intraperitoneais/efeitos adversos , Injeções Intraperitoneais/métodos , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/secundário , Peritônio/efeitos dos fármacos , Peritônio/patologia , Pressão , Ratos , Ratos Nus , Ratos Wistar , Eletricidade Estática
2.
Pharm Res ; 36(9): 126, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31236829

RESUMO

PURPOSE: Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel technique delivering drugs into the abdominal cavity as an aerosol under high pressure. It is hypothesized to have advantages such as enhancing tissue uptake, distributing drugs homogeneously within the closed and expanded abdominal cavity and higher local concentration of drugs in the peritoneal cavity. However, the clinical trials of PIPAC so far are limited to liquid chemotherapeutic solution, and the applicability of biomolecules (such as mRNA, siRNA and oligonucleotide) is not known. We aimed to investigate the feasibility of administrating mRNA lipoplexes to the peritoneal cavity via high pressure nebulization. METHODS: We firstly investigated the influences of nebulization on physicochemical properties and in vitro transfection efficiency of mRNA lipoplexes. Then, mRNA lipoplexes were delivered to healthy rats through intravenous injection, intraperitoneal injection and PIPAC, respectively. RESULTS: mRNA lipoplexes can withstand the high pressure applied during the PIPAC procedure in vitro. Bioluminescence localized to the peritoneal cavity of rats after administration by IP injection and nebulization, while intravenous injection mainly induced protein expression in the spleen. CONCLUSION: This study demonstrated that local nebulization is feasible to apply mRNA complexes in the peritoneal cavity during a PIPAC procedure.


Assuntos
Lipídeos/química , Lipossomos/química , Nanopartículas/química , RNA Mensageiro/administração & dosagem , Aerossóis , Animais , Linhagem Celular Tumoral , Composição de Medicamentos , Estudos de Viabilidade , Humanos , Injeções Intraperitoneais , Injeções Intravenosas , Nebulizadores e Vaporizadores , Cavidade Peritoneal , Pressão , Ratos Nus
3.
Eur J Pharm Biopharm ; 150: 1-13, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113915

RESUMO

This work here presented provides insights over a novel biodegradable polymeric nanosystem made of hyaluronic acid and polyarginine for diaminocyclohexane-platinum (DACHPt) encapsulation. Using mild conditions based on ionic gelation technique, monodispersed blank and DACHPt-loaded nanoparticles (NP) with a size of around 200 nm and negative ζ potential (-35 mV) were obtained. The freeze-drying process was optimized to improve the stability and shelf-life of the developed nanoparticles. After reconstitution, nanoparticles maintained their size showing an association efficiency of around 70% and a high drug loading (8%). In vitro cytotoxicity studies revealed that DACHPt-loaded nanoparticles had a superior anticancer activity compared with oxaliplatin solution. The IC50 was reduced by a factor of two in HT-29 cells (IC50 39 µM vs 74 µM, respectively), and resulted almost 1.3 fold lower in B6KPC3 cells (18 µM vs 23 µM respectively). Whereas toxic effects of both drug and DACHPt-loaded nanoparticles were comparable in the A549 cell line (IC50 11 µM vs 12 µM). DACHPt-loaded nanoparticles were also able to modulate immunogenic cell death (ICD) in vitro. After incubation with B6KPC3 cells, an increase in HMGB1 (high-mobility group box 1) production associated with ATP release occurred. Then, in vivo pharmacokinetic studies were performed after intravenous injection (IV) of DACHPt-loaded nanoparticles and oxaliplatin solution in healthy mice (35.9 µg of platinum equivalent/mouse). An AUC six times higher (24 h * mg/L) than the value obtained following the administration of oxaliplatin solution (3.76 h * mg/L) was found. Cmax was almost five times higher than the control (11.4 mg/L for NP vs 2.48 mg/L). Moreover, the reduction in volume of distribution and clearance clearly indicated a more limited tissue distribution. A simulated repeated IV regimen was performed in silico and showed no accumulation of platinum from the nanoparticles. Overall, the proposed approach discloses a novel nano-oncological treatment based on platinum derivative with improved antitumor activity in vitro and in vivo stability as compared to the free drug.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Ácido Hialurônico/química , Nanopartículas , Oxaliplatina/administração & dosagem , Peptídeos/química , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Células HT29 , Humanos , Injeções Intravenosas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oxaliplatina/química , Oxaliplatina/farmacocinética , Distribuição Tecidual
4.
ACS Appl Mater Interfaces ; 12(26): 29024-29036, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506916

RESUMO

Intra-abdominal dissemination of peritoneal nodules, a condition known as peritoneal carcinomatosis (PC), is typically diagnosed in ovarian cancer patients at the advanced stages. The current treatment of PC consists of perioperative systemic chemotherapy and cytoreductive surgery, followed by intra-abdominal flushing with solutions of chemotherapeutics such as cisplatin and oxaliplatin. In this study, we developed cisplatin-loaded polyarginine-hyaluronic acid nanoscale particles (Cis-pARG-HA NPs) with high colloidal stability, marked drug loading efficiency, unimpaired biological activity, and tumor-targeting ability. Injected Cis-pARG-HA NPs showed enhanced antitumor activity in a rat model of PC, compared to injection of the free cisplatin drug. The activity of Cis-pARG-HA NPs could even be further improved when administered by an intra-abdominal aerosol therapy, referred to as pressurized intraperitoneal aerosol chemotherapy (PIPAC). PIPAC is hypothesized to ensure a more homogeneous drug distribution together with a deeper drug penetration into peritoneal tumor nodules within the abdominal cavity. Using fluorescent pARG-HA NPs, this enhanced nanoparticle deposit on tumors could indeed be observed in regions opposite the aerosolization nozzle. Therefore, this study demonstrates that nanoparticles carrying chemotherapeutics can be synergistically combined with the PIPAC technique for IP therapy of disseminated advanced ovarian tumors, while this synergistic effect was not observed for the administration of free cisplatin.


Assuntos
Cisplatino/química , Ácido Hialurônico/química , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/química , Neoplasias Peritoneais/tratamento farmacológico , Administração por Inalação , Animais , Cisplatino/uso terapêutico , Feminino , Humanos , Nanomedicina/métodos , Oxaliplatina/química , Oxaliplatina/uso terapêutico , Ratos
5.
Adv Healthc Mater ; 9(16): e2000655, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32548967

RESUMO

There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab-PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab-PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab-PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab-PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.


Assuntos
Nanopartículas , Peritônio , Aerossóis , Animais , Sistemas de Liberação de Medicamentos , Humanos , Ratos , Eletricidade Estática
6.
Cancers (Basel) ; 11(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261685

RESUMO

Recent advances in locoregional chemotherapy have opened the door to new approaches for the clinical management of peritoneal carcinomatosis (PC) by facilitating the delivery of anti-neoplastic agents directly to the tumor site, while mitigating adverse effects typically associated with systemic administration. In particular, an innovative intra-abdominal chemotherapeutic approach, known as Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC), was recently introduced to the intraperitoneal (IP) therapy regimens as a palliative therapeutic option in patients with PC, presumably providing a better drug distribution pattern together with deeper drug penetration into tumor nodules within the peritoneal space. Furthermore, the progress of nanotechnology in the past few decades has prompted the application of different nanomaterials in IP cancer therapy, offering new possibilities in this field ranging from an extended retention time to sustained drug release in the peritoneal cavity. This review highlights the progress, challenges, and opportunities in utilizing cancer nanotherapeutics for locoregional drug delivery, with a special emphasis on the aerosolization approach for intraperitoneal therapies.

7.
Iran Biomed J ; 22(3): 171-9, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992682

RESUMO

Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-ß1 (TGFß1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFß1 pathway in a hepatocellular carcinoma cell line (Huh7). Methods: MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. Results: MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFß1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFß1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. Conclusion: The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

8.
Adv Drug Deliv Rev ; 108: 13-24, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422808

RESUMO

Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal carcinomatosis (PC). Over the past decade, a lot of effort has been put both in the academia and clinic in developing IP therapeutic approaches that maximize local efficacy while limiting systemic side effects. Also nanomedicines are under investigation for the treatment of tumors confined to the peritoneal cavity, due to their potential to increase the peritoneal retention and to target drugs to the tumor sites as compared to free drugs. Despite the progress reported by multiple clinical studies, there are no FDA approved drugs or formulations for specific use in the IP cavity yet. This review discusses the current clinical management of PC, as well as recent advances in nanomedicine-based IP delivery. We address important challenges to be overcome towards designing optimal nanocarriers for IP therapy in vivo.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias Peritoneais/terapia , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA