Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 88(18): 9087-94, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548569

RESUMO

The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds.

2.
J Chromatogr A ; 1536: 39-49, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29102379

RESUMO

A pressure tunable (PT) coupled column ensemble has been implemented for the second dimension (2D) separation in comprehensive two dimensional gas chromatography (GC×PTGC). This process requires two columns to be connected by a pressure junction, as a replacement for a single narrow bore, short column in 2D. Various 2D1 and 2D2 columns may be selected to provide complementary selectivity (polarity) compared to the 1D column. The tunable residence time arising from differential pressure drop in each 2D column results in a tunable fractional contribution of each column in the 2D separation. A sample mixture comprising different chemical classes, including alkanes and alcohols, is used to identify the feasibility and extent of selectivity tuning possible in GC×PTGC. The column length is also varied due to the imposed challenge of wraparound in the PT coupled column system as pressures are adjusted in the 2D separation. Different experimental parameters, stationary phase materials and column lengths have been applied to investigate and understand the separation behaviour of the 2D PT coupled column GC×GC system. Results are discussed considering analyte retention time, peak width, linear velocity and the contribution of each 2D column. A specific and unexpected example of GC×GC separation was demonstrated where the peak positions of polar and apolar compounds could almost swap their 2D retention position by application of PT. Kerosene was analysed as an example of complex sample analysis by GC×PTGC system. This process is shown to be a practical approach for altering different stationary phase selectivities in a single 2D arrangement in GC×GC.


Assuntos
Cromatografia Gasosa/instrumentação , Pressão , Álcoois/química , Alcanos/química , Querosene/análise
3.
J Chromatogr A ; 1455: 156-162, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302688

RESUMO

The differential pressure drop of carrier gas by tuning the junction point pressure of a coupled column gas chromatographic system leads to a unique selectivity of the overall separation, which can be tested using a mixture of compounds with a wide range of polarity. This study demonstrates a pressure tuning (PT) GC system employing a microfluidic Deans switch located at the mid-point of the two capillary columns. This PT system allowed variations of inlet-outlet pressure differences of the two columns in a range of 52-17psi for the upstream column and 31-11psi for the downstream column. Peak shifting (differential migration) of compounds due to PT difference are related to a first order regression equation in a Plackett-Burman factorial study. Increased first (upstream) column pressure drop makes the second column characteristics more significant in the coupled column retention behavior, and conversely increased second (downstream) column pressure drop makes the first column characteristics more apparent; such variation can result in component swapping between polar and non-polar compounds. The coupled column system selectivity was evaluated in terms of linear solvation energy relationship (LSER) parameters, and their relation with different pressure drop effects has been constructed by applying multivariate principle component analysis (PCA). It has been found that the coupled column PT system descriptors provide a result that shows a clear clustering of different pressure settings, somewhat intermediate between those of the two commercial columns. This is equivalent to that obtained from a conventional single-column GC analysis where the interaction energy contributed from the stationary phases can be significantly adjusted by choice of midpoint PT. This result provides a foundation for pressure differentiation for selectivity enhancement.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Solventes/química , Modelos Teóricos , Análise Multivariada , Pressão , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA