Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105373, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865318

RESUMO

The bacteriophage capsid protein, Psu (polarity suppression), inhibits the bacterial transcription terminator, Rho. In an effort to find nontraditional antibacterial agents, we previously designed peptides from the Psu C terminus that function as inhibitors of Rho. Here, we demonstrated that these peptides have positive surface-charge densities, and they downregulate many genes in Escherichia coli. We hypothesized that these peptides could bind to nucleic acids and repress gene expression. One of these peptides, peptide 33, represses in vitro transcription from the T7A1 and Plac promoters efficiently by blocking the access of RNA polymerase to the promoter, a mode of transcription repression akin to many bacterial repressors. In vivo, expressions of the peptides reduce the total RNA level as well as transcription from Plac and Posm promoters significantly. However, they are less efficient in repressing transcription from the rRNA promoters with a very high turnover of RNA polymerase. The peptide 33 binds to both single and dsDNA as well as to RNA with dissociation constants ranging from 1 to 5 µM exhibiting preferences for the single-stranded DNA and RNAs. These interactions are salt-resistant and not sequence-specific. Interactions with dsDNA are entropy-driven, while it is enthalpy-driven for the ssDNA. This mode of interaction with nucleic acids is similar to many nonspecific ssDNA-binding proteins. Expression of peptide 33 induces cell elongation and impaired cell division, possibly due to the dislodging of the DNA-binding proteins. Overall, we surmised that these synthetic transcription repressors would function like bacterial nucleoid-associated proteins.


Assuntos
Bacteriófagos , Ácidos Nucleicos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Bacteriófagos/metabolismo , Transcrição Gênica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , RNA/metabolismo
2.
J Biol Chem ; 296: 100653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845047

RESUMO

The transcription terminator Rho regulates many physiological processes in bacteria, such as antibiotic sensitivity, DNA repair, RNA remodeling, and so forth, and hence, is a potential antimicrobial target, which is unexplored. The bacteriophage P4 capsid protein, Psu, moonlights as a natural Rho antagonist. Here, we report the design of novel peptides based on the C-terminal region of Psu using phenotypic screening methods. The resultant 38-mer peptides, in addition to containing mutagenized Psu sequences, also contained plasmid sequences, fused to their C termini. Expression of these peptides inhibited the growth of Escherichia coli and specifically inhibited Rho-dependent termination in vivo. Peptides 16 and 33 exhibited the best Rho-inhibitory properties in vivo. Direct high-affinity binding of these two peptides to Rho also inhibited the latter's RNA-dependent ATPase and transcription termination functions in vitro. These two peptides remained functional even if eight to ten amino acids were deleted from their C termini. In silico modeling and genetic and biochemical evidence revealed that these two peptides bind to the primary RNA-binding site of the Rho hexamer near its subunit interfaces. In addition, the gene expression profiles of these peptides and Psu overlapped significantly. These peptides also inhibited the growth of Mycobacteria and inhibited the activities of Rho proteins from Mycobacterium tuberculosis, Xanthomonas, Vibrio cholerae, and Salmonella enterica. Our results showed that these novel anti-Rho peptides mimic the Rho-inhibition function of the ∼42-kDa dimeric bacteriophage P4 capsid protein, Psu. We conclude that these peptides and their C-terminal deletion derivatives could provide a basis on which to design novel antimicrobial peptides.


Assuntos
Proteínas do Capsídeo/farmacologia , Desenho de Fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Regiões Terminadoras Genéticas , Xanthomonas/efeitos dos fármacos , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Biblioteca de Peptídeos , Plasmídeos , Ligação Proteica , Homologia de Sequência , Xanthomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA