Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 478(24): 4169-4185, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34783343

RESUMO

We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images in the fourth major release of the RELION software. In particular, we introduce VDAM, a variable-metric gradient descent algorithm with adaptive moments estimation, for image refinement; a convolutional neural network for unsupervised selection of 2D classes; and a flexible framework for the design and execution of multiple jobs in pre-defined workflows. In addition, we present a stand-alone utility called MDCatch that links the execution of jobs within this framework with metadata gathering during microscope data acquisition. The new tools are aimed at providing fast and robust procedures for unsupervised cryo-EM structure determination, with potential applications for on-the-fly processing and the development of flexible, high-throughput structure determination pipelines. We illustrate their potential on 12 publicly available cryo-EM data sets.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas/ultraestrutura , Ribossomos/ultraestrutura , Software , Algoritmos
2.
Sci Adv ; 9(13): eadf3021, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989372

RESUMO

Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.


Assuntos
Actinas , Tubulina (Proteína) , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Polimerização , Citoesqueleto/metabolismo , Nucleotídeos/metabolismo , Citoesqueleto de Actina/metabolismo
3.
Biol Imaging ; 3: e13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510163

RESUMO

Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main characteristics are: (a) interoperability, (b) smart object model, (c) gluing operations, (d) comparison operations, (e) wide set of domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility, (o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.

4.
Methods Mol Biol ; 2247: 243-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33301121

RESUMO

Electron microscopy is a powerful tool for studying the homogeneity and structure of biomolecular complexes. The small wavelength of electron and the availability of electron optics enable the direct visualization of macromolecular assemblies in a large range of sizes between 5 and 100 nm. This informs us about the degree of multimerization or aggregation and provides precise information about their general shape and dimensions. When combined with sophisticated image analysis protocols, three-dimensional (3D) information can be gained from 2D projections of the sample, leading to a structural description. When intermediate steps of a reaction can be imaged, insights into the mode of action of macromolecules can be gained, and structure-function relations can be established. However, the way the sample is prepared for its observation within the vacuum of an electron microscope determines the information that can be retrieved from the experiment. We will review two commonly used specimen preparation protocols for subsequent single-particle electron microscopy observation, namely negative staining and vitrification.


Assuntos
Microscopia Crioeletrônica , Substâncias Macromoleculares/química , Microscopia Crioeletrônica/métodos
5.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 403-410, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825701

RESUMO

Scipion is a modular image-processing framework that integrates several software packages under a unified interface while taking care of file formats and conversions. Here, new developments and capabilities of the Scipion plugin for the widely used RELION software package are presented and illustrated with an image-processing pipeline for published data. The user interfaces of Scipion and RELION are compared and the key differences are highlighted, allowing this manuscript to be used as a guide for both new and experienced users of this software. Different on-the-fly image-processing options are also discussed, demonstrating the flexibility of the Scipion framework.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Moleculares , Software
6.
Nat Commun ; 8(1): 1556, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146944

RESUMO

The transcription co-activator complex SAGA is recruited to gene promoters by sequence-specific transcriptional activators and by chromatin modifications to promote pre-initiation complex formation. The yeast Tra1 subunit is the major target of acidic activators such as Gal4, VP16, or Gcn4 but little is known about its structural organization. The 430 kDa Tra1 subunit and its human homolog the transformation/transcription domain-associated protein TRRAP are members of the phosphatidyl 3-kinase-related kinase (PIKK) family. Here, we present the cryo-EM structure of the entire SAGA complex where the major target of activator binding, the 430 kDa Tra1 protein, is resolved with an average resolution of 5.7 Å. The high content of alpha-helices in Tra1 enabled tracing of the majority of its main chain. Our results highlight the integration of Tra1 within the major epigenetic regulator SAGA.


Assuntos
Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Cromatina/química , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestrutura , Histona Acetiltransferases/química , Histona Acetiltransferases/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Saccharomycetales/química , Saccharomycetales/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores/química , Transativadores/ultraestrutura
7.
Protein Sci ; 24(8): 1232-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753033

RESUMO

Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.


Assuntos
Acetiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetiltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Succinimidas/química , Fatores de Transcrição/química , Fatores de Transcrição de p300-CBP/química
8.
Mol Biol Cell ; 24(1): 31-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135996

RESUMO

Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cofilina 1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Carbocianinas/química , Catálise , Cofilina 1/química , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência/métodos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA