Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Langmuir ; 40(2): 1213-1222, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174900

RESUMO

In biological systems, proteins can bind to nanoparticles to form a "corona" of adsorbed molecules. The nanoparticle corona is of significant interest because it impacts an organism's response to a nanomaterial. Understanding the corona requires knowledge of protein structure, orientation, and dynamics at the surface. A residue-level mapping of protein behavior on nanoparticle surfaces is needed, but this mapping is difficult to obtain with traditional approaches. Here, we have investigated the interaction between R2ab and polystyrene nanoparticles (PSNPs) at the level of individual residues. R2ab is a bacterial surface protein from Staphylococcus epidermidis and is known to interact strongly with polystyrene, leading to biofilm formation. We have used mass spectrometry after lysine methylation and hydrogen-deuterium exchange (HDX) NMR spectroscopy to understand how the R2ab protein interacts with PSNPs of different sizes. Lysine methylation experiments reveal subtle but statistically significant changes in methylation patterns in the presence of PSNPs, indicating altered protein surface accessibility. HDX rates become slower overall in the presence of PSNPs. However, some regions of the R2ab protein exhibit faster than average exchange rates in the presence of PSNPs, while others are slower than the average behavior, suggesting conformational changes upon binding. HDX rates and methylation ratios support a recently proposed "adsorbotope" model for PSNPs, wherein adsorbed proteins consist of unfolded anchor points interspersed with partially structured regions. Our data also highlight the challenges of characterizing complex protein-nanoparticle interactions using these techniques, such as fast exchange rates. While providing insights into how R2ab adsorbs onto PSNP surfaces, this research emphasizes the need for advanced methods to comprehend residue-level interactions in the nanoparticle corona.


Assuntos
Nanopartículas , Poliestirenos , Poliestirenos/química , Lisina , Proteínas/química , Nanopartículas/química , Biofilmes
2.
PLoS Pathog ; 17(8): e1009803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352038

RESUMO

Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.


Assuntos
Membrana Celular/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Glicosaminoglicanos/química , Heparitina Sulfato/química , Polimerização , Internalização do Vírus , Animais , Membrana Celular/virologia , Infecções por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Vírion
3.
Glycoconj J ; 40(2): 169-178, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749437

RESUMO

Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Animais , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Antioxidantes/farmacologia , Heparitina Sulfato/química , Mamíferos , Dissacarídeos/química
4.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
5.
J Nat Prod ; 86(6): 1463-1475, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306476

RESUMO

In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-ß-N-acetylgalactosamine-(1→4)-ß-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.


Assuntos
COVID-19 , Pepinos-do-Mar , Animais , Anticoagulantes/farmacologia , Pepinos-do-Mar/química , Sulfatos/química , Heparina , SARS-CoV-2 , Polissacarídeos/química
6.
Environ Microbiol ; 24(3): 1263-1278, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34674390

RESUMO

Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2-heptylquinolin-4(1H)-one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.


Assuntos
Myxococcales , Quinolonas , Animais , Myxococcales/fisiologia , Pseudomonas aeruginosa , Quinolonas/metabolismo , Percepção de Quorum
7.
Anal Chem ; 94(51): 18017-18024, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512753

RESUMO

Protein posttranslational modifications (PTMs) are key modulators of protein structure and function that often change in a dynamic fashion in response to cellular stimuli. Dynamic PTMs are very challenging to structurally characterize using modern techniques, including covalent labeling methods, due to the presence of multiple proteoforms and conformers together in solution. We have coupled an ion exchange high-performance liquid chromatography separation with a flash oxidation system [ion exchange chromatography liquid chromatography-flash oxidation (IEX LC-FOX)] to successfully elucidate structural changes among three phosphoproteoforms of ovalbumin (OVA) during dephosphorylation with alkaline phosphatase. Real-time dosimetry indicates no difference in the effective radical dose between peaks or across the peak, demonstrating both the lack of scavenging of the NaCl gradient and the lack of a concentration effect on radical dose between peaks of different intensities. The use of IEX LC-FOX allows us to structurally probe into each phosphoproteoform as it elutes from the column, capturing structural data before the dynamics of the system to reintroduce heterogeneity. We found significant differences in the residue-level oxidation between the hydroxyl radical footprint of nonphosphorylated, monophosphorylated, and diphosphorylated OVA. Not only were our data consistent with the previously reported stabilization of OVA structure by phosphorylation, but local structural changes were also consistent with the measured order of dephosphorylation of Ser344 being removed first. These results demonstrate the utility of IEX LC-FOX for measuring the structural effects of PTMs, even in dynamic systems.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Fosforilação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica/métodos
8.
Chembiochem ; 23(4): e202100485, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878720

RESUMO

Alzheimer's disease severely perturbs transition metal homeostasis in the brain leading to the accumulation of excess metals in extracellular and intraneuronal locations. The amyloid beta protein binds these transition metals, ultimately causing severe oxidative stress in the brain. Metal chelation therapy is an approach to sequester metals from amyloid beta and relieve the oxidative stress. Here we have designed a mixed N/O donor Cu chelator inspired by the proposed ligand set of Cu in amyloid beta. We demonstrate that the chelator effectively removes Cu from amyloid beta and suppresses reactive oxygen species (ROS) production by redox silencing and radical scavenging both in vitro and in cellulo. The impact of ROS on the extent of oxidation of the different aggregated forms of the peptide is studied by mass spectrometry, which, along with other ROS assays, shows that the oligomers are pro-oxidants in nature. The aliphatic Leu34, which was previously unobserved, has been identified as a new oxidation site.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Quelantes/farmacologia , Cobre/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Quelantes/síntese química , Quelantes/química , Cobre/química , Humanos , Ligantes , Espécies Reativas de Oxigênio/metabolismo
9.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33173010

RESUMO

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Assuntos
Antivirais/farmacologia , Heparina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/metabolismo , Avaliação Pré-Clínica de Medicamentos , Enoxaparina/química , Enoxaparina/metabolismo , Enoxaparina/farmacologia , Vetores Genéticos/genética , Células HEK293 , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Concentração Inibidora 50 , Lentivirus/genética , Estrutura Molecular , Peso Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Ligação Proteica , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Transdução Genética , Ligação Viral/efeitos dos fármacos
10.
Pharm Res ; 39(3): 541-551, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35237922

RESUMO

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.


Assuntos
COVID-19 , Heparina , Animais , Anticoagulantes/efeitos adversos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Tromboplastina Parcial
11.
Anal Chem ; 93(7): 3510-3516, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33560821

RESUMO

Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.


Assuntos
Radical Hidroxila , Pegadas de Proteínas , Cromatografia Líquida , Espectrometria de Massas , Oxirredução
12.
Glycoconj J ; 38(1): 25-33, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411075

RESUMO

Oviductus ranae (O.ran.) has been widely used as a tonic and a traditional animal-based Chinese medicine. O.ran. extracts have been reported to have numerous biological activities, including activities that are often associated with mammalian glycosaminoglycans such as anti-inflammatory, antiosteoperotic, and anti-asthmatic. Glycosaminoglycans are complex linear polysaccharides ubiquitous in mammals that possess a wide range of biological activities. However, their presence and possible structural characteristics within O.ran. were previously unknown. In this study, glycosaminoglycans were isolated from O.ran. and their disaccharide compositions were analyzed by liquid chromatography-ion trap/time-of-flight mass spectrometry (LC-MS-ITTOF). Heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate (DS) and hyaluronic acid (HA) were detected in O.ran. with varied disaccharide compositions. HS species contain highly acetylated disaccharides, and have various structures in their constituent chains. CS/DS chains also possess a heterogeneous structure with different sulfation patterns and densities. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of O.ran..


Assuntos
Glicosaminoglicanos/análise , Glicosaminoglicanos/química , Materia Medica/química , Sulfatos de Condroitina/análise , Cromatografia Líquida , Dermatan Sulfato/análogos & derivados , Dermatan Sulfato/análise , Dissacarídeos/análise , Dissacarídeos/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Heparina/análise , Heparitina Sulfato/análise , Espectrometria de Massas/métodos , Sensibilidade e Especificidade
13.
J Struct Biol ; 209(1): 107407, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31698075

RESUMO

Although the 3D structure of carbohydrates is known to contribute to their biological roles, conformational studies of sugars are challenging because their chains are flexible in solution and consequently the number of 3D structural restraints is limited. Here, we investigate the conformational properties of the tetrasaccharide building block of the Lytechinus variegatus sulfated fucan composed of the following structure [l-Fucp4(SO3-)-α(1-3)-l-Fucp2,4(SO3-)-α(1-3)-l-Fucp2(SO3-)-α(1-3)-l-Fucp2(SO3-)] and the composing monosaccharide unit Fucp, primarily by nuclear magnetic resonance (NMR) experiments performed at very low temperatures and using H2O as the solvent for the sugars rather than using the conventional deuterium oxide. By slowing down the fast chemical exchange rates and forcing the protonation of labile sites, we increased the number of through-space 1H-1H distances that could be measured by NMR spectroscopy. Following this strategy, additional conformational details of the tetrasaccharide and l-Fucp in solution were obtained. Computational molecular dynamics was performed to complement and validate the NMR-based measurements. A model of the NMR-restrained 3D structure is offered for the tetrasaccharide.


Assuntos
Fucose/química , Conformação Molecular , Oligossacarídeos/ultraestrutura , Polissacarídeos/ultraestrutura , Animais , Carboidratos/química , Lytechinus/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Polissacarídeos/química
14.
Anal Chem ; 92(5): 3834-3843, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32039584

RESUMO

Hydroxyl radical protein footprinting (HRPF) is a powerful technique for probing changes in protein topography, based on quantifying the amount of oxidation of different regions of a protein. While quantification of HRPF oxidation at the peptide level is relatively common and straightforward, quantification at the residue level is challenging because of the influence of oxidation on MS/MS fragmentation and the large number of complex and only partially chromatographically resolved isomeric peptide oxidation products. HRPF quantification of isomeric peptide oxidation products (where the peptide sequence is the same but isomeric oxidation products are formed at different sites) at the residue level by electron transfer dissociation tandem mass spectrometry (ETD MS/MS) has been demonstrated in both model peptides and HRPF products, but the method is hampered by the partial separation of oxidation isomers by reversed phase chromatography. This requires custom MS/MS methods to equally sample all isomeric oxidation products across their elution window, greatly increasing method development time and reducing the oxidation products quantified in a single LC-MS/MS run. Here, we present a zwitterionic hydrophilic interaction capillary chromatography (ZIC-HILIC) method to ideally coelute all isomeric peptide oxidation products while separating different peptides. This allows us to relatively quantify peptide oxidation isomers using an ETD MS/MS spectrum acquired at any point across the single peptide oxidation isomer peak, greatly simplifying data acquisition and data analysis.


Assuntos
Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas , Radical Hidroxila/química , Isomerismo , Mioglobina/química , Mioglobina/metabolismo , Oxirredução , Peptídeos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
15.
Mol Cell Proteomics ; 16(2): 255-264, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941081

RESUMO

We present a statistical model to estimate the accuracy of derivatized heparin and heparan sulfate (HS) glycosaminoglycan (GAG) assignments to tandem mass (MS/MS) spectra made by the first published database search application, GAG-ID. Employing a multivariate expectation-maximization algorithm, this statistical model distinguishes correct from ambiguous and incorrect database search results when computing the probability that heparin/HS GAG assignments to spectra are correct based upon database search scores. Using GAG-ID search results for spectra generated from a defined mixture of 21 synthesized tetrasaccharide sequences as well as seven spectra of longer defined oligosaccharides, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly, ambiguously, and incorrectly assigned heparin/HS GAGs. This analysis makes it possible to filter large MS/MS database search results with predictable false identification error rates.


Assuntos
Glicosaminoglicanos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Bases de Dados de Proteínas , Heparina/análise , Heparitina Sulfato/análise , Modelos Estatísticos , Peptídeos/química
16.
J Bacteriol ; 200(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29866802

RESUMO

The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , Urease/metabolismo , Helicobacter pylori/patogenicidade , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Estresse Oxidativo
17.
Anal Chem ; 90(21): 12625-12630, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30290117

RESUMO

Hydroxyl radical protein footprinting (HRPF) is a powerful method for measuring protein topography, allowing researchers to monitor events that alter the solvent accessible surface of a protein (e.g., ligand binding, aggregation, conformational changes, etc.) by measuring changes in the apparent rate of reaction of portions of the protein to hydroxyl radicals diffusing in solution. Fast Photochemical Oxidation of Proteins (FPOP) offers an ultrafast benchtop method for radical generation for HRPF, photolyzing hydrogen peroxide using a UV laser to generate high concentrations of hydroxyl radicals that are consumed on roughly a microsecond time scale. The broad reactivity of hydroxyl radicals means that almost anything added to the solution (e.g., ligands, buffers, excipients, etc.) will scavenge hydroxyl radicals, altering their half-life and changing the effective radical concentration experienced by the protein. Similarly, minute changes in peroxide concentration, laser fluence, and buffer composition can alter the effective radical concentration, making reproduction of data challenging. Here, we present a simple method for radical dosimetry that can be carried out as part of the FPOP workflow, allowing for measurement of effective radical concentration in real time. Additionally, by modulating the amount of radical generated, we demonstrate that effective hydroxyl radical yields in FPOP HRPF experiments carried out in buffers with widely differing levels of hydroxyl radical scavenging capacity can be compensated on the fly, yielding statistically indistinguishable results for the same conformer. This method represents a major step in transforming FPOP into a robust and reproducible technology capable of probing protein structure in a wide variety of contexts.


Assuntos
Adenina/química , Fibrinopeptídeo B/química , Radical Hidroxila/química , Mioglobina/química , Pegadas de Proteínas/métodos , Adenina/análise , Radical Hidroxila/efeitos da radiação , Oxirredução , Espectrofotometria Ultravioleta , Raios Ultravioleta
18.
Anal Biochem ; 561-562: 32-36, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240591

RESUMO

Protein structural analysis by mass spectrometry has gained significant popularity in recent years, including high-resolution protein topographical mapping by fast photochemical oxidation of proteins (FPOP). The ability to provide protein topographical information at moderate spatial resolution makes FPOP an attractive technology for the protein pharmaceutical discovery and development processes. However, current technology limits the throughput and requires significant manual sample manipulation. Similarly, as FPOP is being used on larger samples, sample flow through the capillary becomes challenging. No systematic comparison of the performance of static flash photolysis with traditional flow FPOP has been reported. Here, we evaluate a 96-well microtiter-based laser flash photolysis method for the topographical probing of proteins, which subsequently could be used to analyze higher order structure of the protein in a high-throughput fashion with minimal manual sample manipulation. We used multiple metrics to compare microtiter FPOP performance with that of traditional flow FPOP: adenine-based hydroxyl radical dosimetry, oxidation efficiency of a model peptide, and hydroxyl radical protein footprint of myoglobin. In all cases, microtiter plate FPOP performed comparably with traditional flow FPOP, requiring a small fraction of the time for exposure. This greatly reduced sample exposure time, coupled with automated sample handling in 96-well microtiter plates, makes microtiter-based FPOP an important step in achieving the throughput required to adapt hydroxyl radical protein footprinting for screening purposes.


Assuntos
Catalase/metabolismo , Fibrinopeptídeo B/metabolismo , Ensaios de Triagem em Larga Escala , Mioglobina/metabolismo , Fotólise , Catalase/química , Fibrinopeptídeo B/química , Mioglobina/química , Oxirredução
19.
Biochemistry ; 56(7): 957-970, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28102671

RESUMO

Glycoprotein gp120 is a surface antigen and virulence factor of human immunodeficiency virus 1. Broadly neutralizing antibodies (bNAbs) that react to gp120 from a variety of HIV isolates offer hope for the development of broadly effective immunogens for vaccination purposes, if the interactions between gp120 and bNAbs can be understood. From a structural perspective, gp120 is a particularly difficult system because of its size, the presence of multiple flexible regions, and the large amount of glycosylation, all of which are important in gp120-bNAb interactions. Here, the interaction of full-length, glycosylated gp120 with bNAb b12 is probed using high-resolution hydroxyl radical protein footprinting (HR-HRPF) by fast photochemical oxidation of proteins. HR-HRPF allows for the measurement of changes in the average solvent accessible surface area of multiple amino acids without the need for measures that might alter the protein conformation, such as mutagenesis. HR-HRPF of the gp120-b12 complex coupled with computational modeling shows a novel extensive interaction of the V1/V2 domain, probably with the light chain of b12. Our data also reveal HR-HRPF protection in the C3 domain caused by interaction of the N330 glycan with the b12 light chain. In addition to providing information about the interactions of full-length, glycosylated gp120 with b12, this work serves as a template for the structural interrogation of full-length glycosylated gp120 with other bNAbs to better characterize the interactions that drive the broad specificity of the bNAb.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Pegadas de Proteínas/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Radical Hidroxila , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos
20.
Mol Cell Proteomics ; 14(6): 1720-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25887393

RESUMO

Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell-cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run.


Assuntos
Heparina/análise , Heparitina Sulfato/análise , Oligossacarídeos/análise , Cromatografia Líquida , Glicômica , Software , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA