Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 14(9): 5308-14, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25101896

RESUMO

Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.

2.
J Am Chem Soc ; 135(18): 6750-3, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23369051

RESUMO

Two-dimensional diffusion ordered spectroscopy (2D DOSY) NMR was used to probe the micellar structure of sodium dodecyl sulfate (SDS) and sodium cholate (SC) in aqueous solutions with and without semiconducting and metallic single-walled carbon nanotubes (SWCNTs). The solutions contain SDS and SC at weight ratios of 1:4 and 3:2, the ratios commonly used to isolate semiconducting and metallic SWCNTs through density gradient ultracentrifugation (DGU). These results show that the coverage of surfactant on the semiconducting and metallic SWCNTs is nearly identical in the 1:4 surfactant mixture, and a lower degree of bundling is responsible for the greater buoyancy of semiconducting SWCNTs. In the 3:2 surfactant mixture, the metallic SWCNTs are only encapsulated in SC while the semiconducting SWCNTs remain encapsulated in a poorly packed two-surfactant micelle, leading to a large buoyant density difference between the electronic species. This work provides insight into future directions to increase the purity of semiconducting and metallic SWCNTs sorted through DGU and demonstrates the utility of 2D DOSY NMR in probing SWCNT-surfactant complexes.


Assuntos
Nanotubos de Carbono/química , Colato de Sódio/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Difusão , Espectroscopia de Ressonância Magnética , Micelas , Tamanho da Partícula , Propriedades de Superfície
3.
Small ; 9(1): 45-51, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22987547

RESUMO

By varying the evaporation conditions and the nanotube and surfactant concentrations, large-area, aligned single-walled carbon nanotube (SWCNT) thin films are fabricated from electronically monodisperse SWCNT solutions by evaporation-driven self-assembly with precise control over the thin film growth geometry. Tunability is possible from 0.5 µm stripes to continuous thin films. The resulting SWCNT thin films possess highly anisotropic electrical and optical properties that are well suited for transparent conductor applications.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , DNA/química , Condutividade Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Teste de Materiais , Microscopia Eletrônica de Varredura/métodos , Nanotubos/química , Silício/química , Espectrofotometria Ultravioleta/métodos
4.
Phys Chem Chem Phys ; 15(48): 20966-72, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24213459

RESUMO

Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.

5.
J Phys Chem Lett ; 7(20): 4223-4229, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27723986

RESUMO

Polyfluorenes have achieved noteworthy performance in organic electronic devices but exhibit undesired green band emission under photo-oxidative conditions that have limited their broad utility in optoelectronic applications. In addition, polyfluorenes are well-known dispersants of single-walled carbon nanotubes (SWCNTs), although the influence of SWCNTs on polyfluorene photo-oxidative stability has not yet been defined. Here we quantitatively explore the photophysical properties of poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) under photo-oxidative conditions when it is in van der Waals contact with SWCNTs. Photoluminescence spectroscopy tracks the spectral evolution of the polymer emission following ambient ultraviolet (UV) exposure, confirming that PFN exhibits green band emission. In marked contrast, PFN-wrapped SWCNTs possess high spectral stability without green band emission under the same ambient UV exposure conditions. By investigating a series of PFN thin films as a function of SWCNT content, it is shown that SWCNT loadings as low as ∼23 wt % suppress photo-oxidative degradation. These findings suggest that PFN-SWCNT composites provide an effective pathway toward utilizing polyfluorenes in organic optoelectronics.

6.
ACS Nano ; 10(11): 10573-10579, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27783505

RESUMO

Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC-polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC-polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC-polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.

7.
Adv Mater ; 27(4): 734-9, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25389110

RESUMO

A new type of carbon charge-transfer magnet, consisting of a fullerene acceptor and single-walled carbon nanotube donor, is demonstrated, which exhibits room temperature ferromagnetism and magnetoelectric (ME) coupling. In addition, external stimuli (electric/magnetic/elastic field) and the concentration of a nanocarbon complex enable the tunabilities of the magnetization and ME coupling due to the control of the charge transfer.

8.
ACS Appl Mater Interfaces ; 7(13): 7428-35, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25797180

RESUMO

Semiconducting single-walled carbon nanotube/fullerene bulk heterojunctions exhibit unique optoelectronic properties highly suitable for flexible, efficient, and robust photovoltaics and photodetectors. We investigate charge-transfer dynamics in inverted devices featuring a polyethylenimine-coated ZnO nanowire array infiltrated with these blends and find that trap-assisted recombination dominates transport within the blend and at the active layer/nanowire interface. We find that electrode modifiers suppress this recombination, leading to high performance.

9.
Adv Mater ; 25(25): 3433-7, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23716366

RESUMO

High-performance broad-spectrum nanocarbon bulk-heterojunction photovoltaic photodetectors are reported. These reported photodetectors consist of a semiconducting single-walled carbon nanotube (s-SWCNT) and a PC71 BM blended active layer. Magnetic-field effects and the chirality of the s-SWCNTs play an important role in controlling the photoresponse time and photocurrent improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA