Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 62(1): 80-91, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33165601

RESUMO

Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Proteínas de Cloroplastos/fisiologia , Resposta ao Choque Frio , Lipídeos de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Lipídeos de Membrana/análise , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo
2.
Blood ; 134(3): 291-303, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31101623

RESUMO

Efficient migration of macrophages to sites of inflammation requires cell surface-bound plasmin(ogen). Here, we investigated the mechanisms underlying the deficits of plasmin(ogen)-mediated macrophage migration in 2 models: murine thioglycollate-induced peritonitis and in vitro macrophage migration. As previously reported, macrophage migration into the peritoneal cavity of mice in response to thioglycollate was significantly impaired in the absence of plasminogen. Fibrin(ogen) deposition was noted in the peritoneal cavity in response to thioglycollate, with a significant increase in fibrin(ogen) in the plasminogen-deficient mice. Interestingly, macrophage migration was restored in plasminogen-deficient mice by simultaneous imposition of fibrinogen deficiency. Consistent with this in vivo finding, chemotactic migration of cultured macrophages through a fibrin matrix did not occur in the absence of plasminogen. The macrophage requirement for plasmin-mediated fibrinolysis, both in vivo and in vitro, was negated by deletion of the major myeloid integrin αMß2-binding motif on the γ chain of fibrin(ogen). The study identifies a critical role of fibrinolysis in macrophage migration, presumably through the alleviation of migratory constraints imposed by the interaction of leukocytes with fibrin(ogen) through the integrin αMß2 receptor.


Assuntos
Quimiotaxia de Leucócito , Fibrinolisina/metabolismo , Fibrinólise , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrinogênio/genética , Fibrinogênio/metabolismo , Imunofluorescência , Humanos , Imunofenotipagem , Inflamação/patologia , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Plasminogênio/deficiência , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA