Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544854

RESUMO

Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.


Assuntos
Distribuição Animal , Evolução Biológica , Cães/genética , Fluxo Gênico , Genética Populacional , Genoma , Migração Humana , Animais , Arqueologia , Humanos , Sibéria
2.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267779

RESUMO

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Assuntos
Cervos , Variação Genética , Animais , DNA Mitocondrial/genética , Cervos/genética , Demografia , Europa (Continente) , América do Norte , Filogenia , Análise de Sequência de DNA
3.
Science ; 382(6676): 1276-1281, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096384

RESUMO

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/virologia , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/história , Doença de Marek/virologia , Virulência/genética , Filogenia
4.
Genes (Basel) ; 9(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037043

RESUMO

The European domestic goose is a widely farmed species known to have descended from the wild greylag goose (Anser anser). However, the evolutionary history of this domesticate is still poorly known. Ancient DNA studies have been useful for many species, but there has been little such work on geese. We have studied temporal genetic variation among domestic goose specimens excavated from Russian archaeological sites (4th⁻18th centuries) using a 204 base pair fragment of the mitochondrial control region. Specimens fell into three different genetic clades: the domestic D-haplogroup, the F-haplogroup that includes both wild and domestic geese, and a clade comprising another species, the taiga bean goose. Most of the subfossil geese carried typical domestic D-haplotypes. The domestication status of the geese carrying F-haplotypes is less certain, as the haplotypes identified were not present among modern domestic geese and could represent wild geese (misclassified as domestics), introgression from wild geese, or local domestication events. The bones of taiga bean goose were most probably misidentified as domestic goose but the domestication of bean goose or hybridization with domestic goose is also possible. Samples from the 4th to 10th century were clearly differentiated from the later time periods due to a haplotype that was found only in this early period, but otherwise no temporal or geographical variation in haplotype frequencies was apparent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA