Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 27(11): 16195-16205, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163803

RESUMO

The optical properties of hexagonal GaN microdisk arrays grown on sapphire substrates by selective area growth (SAG) technique were investigated both experimentally and theoretically. Whispering-gallery-mode (WGM) lasing is observed from various directions of the GaN pyramids collected at room temperature, with the dominant lasing mode being Transverse-Electric (TE) polarized. A relaxation of compressive strain in the lateral overgrown region of the GaN microdisk is illustrated by photoluminescence (PL) mapping and Raman spectroscopy. A strong correlation between the crystalline quality and lasing behavior of the GaN microdisks was also demonstrated.

2.
Nanotechnology ; 30(43): 435202, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31304918

RESUMO

AlGaN-based deep ultraviolet (DUV) multiple-quantum-wells (MQWs) incorporating strain-modulated nanostructures are proposed, demonstrating enhanced degree of polarization (DOP) and improved light extraction efficiency (LEE). The influence of Al composition and bi-axial strains on the optical behaviors of the DUV-MQWs were carefully examined. Compared with planar DUV-MQWs, strain-modulated nanostructure patterned MQWs show three times higher photoluminescence and increased DOP from -0.43 to -0.16. Moreover, nanostructure patterned DUV-MQWs under compressive strains further illustrate higher DOP and LEE values than those under tensile strains due to more efficient diffraction of the guided modes of the transverse electric (TE) polarized light. Our work demonstrates, for the first time, that a combination of compressive in-plane strain and surface nanostructure show unambiguous advantages in facilitating TE mode emission, thus have great promises in the design and optimization of highly efficient polarized DUV optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 12(23): 26258-26266, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432467

RESUMO

The neural system is a multifunctional perceptual learning system. Our brain can perceive different kinds of information to form senses, including touch, sight, hearing, and so on. Mimicking such perceptual learning systems is critical for neuromorphic platform applications. Here, an artificial tactile perceptual neuron is realized by utilizing electronic skins (E-skin) with oxide neuromorphic transistors, and this artificial tactile perceptual neuron successfully simulates biological tactile afferent nerves. First, the E-skin device is constructed using microstructured polydimethylsiloxane membranes coated with Ag/indium tin oxide (ITO) layers, exhibiting good sensitivities of ∼2.1 kPa-1 and fast response time of tens of milliseconds. Then, the chitosan-based electrolyte-gated ITO neuromorphic transistor is fabricated and exhibits high performance and synaptic responses. Finally, the integrated artificial tactile perceptual neuron demonstrates pressure excitatory postsynaptic current and paired-pulse facilitation. The artificial tactile perceptual neuron is featured with low energy consumption as low as ∼0.7 nJ. Moreover, it can mimic acute and chronic pain and nociceptive characteristics of allodynia and hyperalgesia in biological nociceptors. Interestingly, the artificial tactile perceptual neuron can employ "Morse code" pressure-interpreting scheme. This simple and low-cost approach has excellent potential for applications including but not limited to intelligent humanoid robots and replacement neuroprosthetics.


Assuntos
Biomimética/instrumentação , Modelos Neurológicos , Pressão , Dispositivos Eletrônicos Vestíveis , Neurônios Aferentes , Robótica/instrumentação , Transistores Eletrônicos
4.
Micromachines (Basel) ; 11(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516889

RESUMO

The non-centrosymmetricity of III-nitride wurtzite crystals enables metal or nitrogen polarity with dramatically different surface energies and optical properties. In this work, III-polar and N-polar nanostructured ultraviolet multiple quantum wells (UV-MQWs) were fabricated by nanosphere lithography and reactive ion etching. The influence of KOH etching and rapid thermal annealing treatments on the luminescence behaviors were carefully investigated, showing a maximum enhancement factor of 2.4 in emission intensity for III-polar nanopillars, but no significant improvement for N-polar nanopillars. The discrepancy in optical behaviors between III- and N-polar nanopillar MQWs stems from carrier localization in III-polar surface, as indium compositional inhomogeneity is discovered by cathodoluminescence mapping, and a defect-insensitive emission property is observed. Therefore, non-radiative recombination centers such as threading dislocations or point defects are unlikely to influence the optical property even after post-fabrication surface treatment. This work lays solid foundation for future study on the effects of surface treatment on III- and N-polar nanostructured light-emitting-diodes and provides a promising route for the design of nanostructure photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA