Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 157(7): 1644-1656, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949974

RESUMO

Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.


Assuntos
Herpesvirus Humano 4/química , Engenharia de Proteínas , Proteínas/farmacologia , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Biologia Computacional , Cristalografia por Raios X , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/fisiologia , Xenoenxertos , Humanos , Linfoma de Células B/tratamento farmacológico , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Transplante de Neoplasias , Proteínas/química , Proteínas/metabolismo , Alinhamento de Sequência , Proteínas Virais/química
2.
Nucleic Acids Res ; 51(8): 3513-3528, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794719

RESUMO

Bacteriophage exclusion ('BREX') systems are multi-protein complexes encoded by a variety of bacteria and archaea that restrict phage by an unknown mechanism. One BREX factor, termed BrxL, has been noted to display sequence similarity to various AAA+ protein factors including Lon protease. In this study we describe multiple CryoEM structures of BrxL that demonstrate it to be a chambered, ATP-dependent DNA binding protein. The largest BrxL assemblage corresponds to a dimer of heptamers in the absence of bound DNA, versus a dimer of hexamers when DNA is bound in its central pore. The protein displays DNA-dependent ATPase activity, and ATP binding promotes assembly of the complex on DNA. Point mutations within several regions of the protein-DNA complex alter one or more in vitro behaviors and activities, including ATPase activity and ATP-dependent association with DNA. However, only the disruption of the ATPase active site fully eliminates phage restriction, indicating that other mutations can still complement BrxL function within the context of an otherwise intact BREX system. BrxL displays significant structural homology to MCM subunits (the replicative helicase in archaea and eukaryotes), implying that it and other BREX factors may collaborate to disrupt initiation of phage DNA replication.


Assuntos
Acinetobacter , Protease La , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Archaea/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , Ligação Proteica , Acinetobacter/enzimologia , Acinetobacter/virologia , Protease La/ultraestrutura
3.
Nucleic Acids Res ; 47(1): 450-467, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30395313

RESUMO

BbvCI, a Type IIT restriction endonuclease, recognizes and cleaves the seven base pair sequence 5'-CCTCAGC-3', generating 3-base, 5'-overhangs. BbvCI is composed of two protein subunits, each containing one catalytic site. Either site can be inactivated by mutation resulting in enzyme variants that nick DNA in a strand-specific manner. Here we demonstrate that the holoenzyme is labile, with the R1 subunit dissociating at low pH. Crystallization of the R2 subunit under such conditions revealed an elongated dimer with the two catalytic sites located on opposite sides. Subsequent crystallization at physiological pH revealed a tetramer comprising two copies of each subunit, with a pair of deep clefts each containing two catalytic sites appropriately positioned and oriented for DNA cleavage. This domain organization was further validated with single-chain protein constructs in which the two enzyme subunits were tethered via peptide linkers of variable length. We were unable to crystallize a DNA-bound complex; however, structural similarity to previously crystallized restriction endonucleases facilitated creation of an energy-minimized model bound to DNA, and identification of candidate residues responsible for target recognition. Mutation of residues predicted to recognize the central C:G base pair resulted in an altered enzyme that recognizes and cleaves CCTNAGC (N = any base).


Assuntos
Clivagem do DNA , Enzimas de Restrição do DNA/química , Holoenzimas/química , Subunidades Proteicas/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/isolamento & purificação , Escherichia coli/enzimologia , Holoenzimas/genética , Holoenzimas/isolamento & purificação , Mutação , Peptídeos/química , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação
4.
Nucleic Acids Res ; 45(3): 1516-1528, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180307

RESUMO

R.SwaI, a Type IIP restriction endonuclease, recognizes a palindromic eight base pair (bp) symmetric sequence, 5΄-ATTTAAAT-3΄, and cleaves that target at its center to generate blunt-ended DNA fragments. Here, we report three crystal structures of SwaI: unbound enzyme, a DNA-bound complex with calcium ions; and a DNA-bound, fully cleaved complex with magnesium ions. We compare these structures to two structurally similar 'PD-D/ExK' restriction endonucleases (EcoRV and HincII) that also generate blunt-ended products, and to a structurally distinct enzyme (the HNH endonuclease PacI) that also recognizes an 8-bp target site consisting solely of A:T base pairs. Binding by SwaI induces an extreme bend in the target sequence accompanied by un-pairing and re-ordering of its central A:T base pairs. This result is reminiscent of a more dramatic target deformation previously described for PacI, implying that long A:T-rich target sites might display structural or dynamic behaviors that play a significant role in endonuclease recognition and cleavage.


Assuntos
DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Sequência Rica em At , Sequência de Aminoácidos , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Homologia Estrutural de Proteína , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 112(12): 3704-9, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775555

RESUMO

We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.


Assuntos
Carbono/química , Engenharia de Proteínas/métodos , Proteínas/química , Biomassa , Vias Biossintéticas , Ciclo do Carbono , Catálise , Clonagem Molecular , Escherichia coli/enzimologia , Formaldeído/química , Formiatos/química , Espectroscopia de Ressonância Magnética , Reação em Cadeia da Polimerase , Software , Termodinâmica
6.
Nucleic Acids Res ; 40(11): 4954-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22334611

RESUMO

LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences ≈ 20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering-many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications.


Assuntos
Endodesoxirribonucleases/química , Sequência de Aminoácidos , Cristalografia , DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Evolução Molecular , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Nucleic Acids Res ; 39(18): 8223-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724614

RESUMO

A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x(15)-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R-M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Sequência de Aminoácidos , Bacillus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Clivagem do DNA , Metilases de Modificação do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
Structure ; 29(6): 521-530.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33826880

RESUMO

Restriction enzymes that combine methylation and cleavage into a single assemblage and modify one DNA strand are capable of efficient adaptation toward novel targets. However, they must reliably cleave invasive DNA and methylate newly replicated unmodified host sites. One possible solution is to enforce a competition between slow methylation at a single unmodified host target, versus faster cleavage that requires multiple unmodified target sites in foreign DNA to be brought together in a reaction synapse. To examine this model, we have determined the catalytic behavior of a bifunctional type IIL restriction-modification enzyme and determined its structure, via cryoelectron microscopy, at several different stages of assembly and coordination with bound DNA targets. The structures demonstrate a mechanism in which an initial dimer is formed between two DNA-bound enzyme molecules, positioning the endonuclease domain from each enzyme against the other's DNA and requiring further additional DNA-bound enzyme molecules to enable cleavage.


Assuntos
Bacteriófagos/genética , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , DNA/metabolismo , Microscopia Crioeletrônica , DNA/química , Genoma Bacteriano , Genoma Viral , Instabilidade Genômica , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
9.
Commun Biol ; 4(1): 1240, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716407

RESUMO

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , SARS-CoV-2/metabolismo , Sequências de Repetição em Tandem , Sequência de Aminoácidos , COVID-19/virologia , Simulação por Computador , Cristalização , Células HEK293 , Humanos , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Nat Struct Mol Biol ; 27(4): 342-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203491

RESUMO

Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.


Assuntos
Nanopartículas/química , Engenharia de Proteínas , Proteínas/química , Sequências de Repetição em Tandem/genética , Motivos de Aminoácidos/genética , Técnicas de Cultura de Células , Humanos , Modelos Moleculares , Domínios Proteicos/genética , Estabilidade Proteica , Proteínas/genética , Linfócitos T/química
11.
Nucleic Acids Res ; 35(21): 7209-21, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17947319

RESUMO

The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of DeltaH and TDeltaS are not strongly correlated with the overall extent of DNA bending, unfavorable DeltaH(binding) is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific DeltaS(binding).


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Endodesoxirribonucleases/química , Termodinâmica , Pareamento Incorreto de Bases , Calorimetria , DNA/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endodesoxirribonucleases/classificação , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína
12.
J Mol Biol ; 358(4): 1137-51, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16569414

RESUMO

I-HmuI and I-BasI are two highly similar nicking DNA endonucleases, which are each encoded by a group I intron inserted into homologous sites within the DNA polymerase genes of Bacillus phages SPO1 and Bastille, respectively. Here, we present a comparison of the DNA specificities and cleavage activities of these enconucleases with homologous target sites. I-BasI has properties that are typical of homing endonucleases, nicking the intron-minus polymerase genes in either host genome, three nucleotides downstream of the intron insertion site. In contrast, I-HmuI nicks both the intron-plus and intron-minus site in its own host genome, but does not act on the target from Bastille phage. Although the enzymes have distinct DNA substrate specificities, both bind to an identical 25bp region of their respective intron-minus DNA polymerase genes surrounding the intron insertion site. The endonucleases appear to interact with the DNA substrates in the downstream exon 2 in a similar manner. However, whereas I-HmuI is known to make its only base-specific contacts within this exon region, structural modeling analyses predict that I-BasI might make specific base contacts both upstream and downstream of the site of intron insertion. The predicted requirement for base-specific contacts in exon 1 for cleavage by I-BasI was confirmed experimentally. This explains the difference in substrate specificities between the two enzymes, including the observation that the former enzyme is relatively insensitive to the presence of an intron upstream of exon 2. These differences are likely a consequence of divergent evolutionary constraints.


Assuntos
Fagos Bacilares/enzimologia , Desoxirribonuclease I/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Fagos Bacilares/genética , Sequência de Bases , Sítios de Ligação/genética , Metilação de DNA , DNA Viral/genética , DNA Viral/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/genética , Escherichia coli/genética , Genes Bacterianos , Radical Hidroxila/metabolismo , Íntrons , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
13.
J Mol Biol ; 428(1): 206-220, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26705195

RESUMO

LAGLIDADG homing endonucleases ("meganucleases") are highly specific DNA cleaving enzymes that are used for genome engineering. Like other enzymes that act on DNA targets, meganucleases often display binding affinities and cleavage activities that are dominated by one protein domain. To decipher the underlying mechanism of asymmetric DNA recognition and catalysis, we identified and characterized a new monomeric meganuclease (I-SmaMI), which belongs to a superfamily of homologous enzymes that recognize divergent DNA sequences. We solved a series of crystal structures of the enzyme-DNA complex representing a progression of sequential reaction states, and we compared the structural rearrangements and surface potential distributions within each protein domain against their relative contribution to binding affinity. We then determined the effects of equivalent point mutations in each of the two enzyme active sites to determine whether asymmetry in DNA recognition is translated into corresponding asymmetry in DNA cleavage activity. These experiments demonstrate the structural basis for "dominance" by one protein domain over the other and provide insights into this enzyme's conformational switch from a nonspecific search mode to a more specific recognition mode.


Assuntos
DNA/química , DNA/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Endonucleases/genética , Hidrólise , Modelos Moleculares , Mutação Puntual , Conformação Proteica
14.
Structure ; 24(6): 862-73, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27133026

RESUMO

LAGLIDADG meganucleases are DNA cleaving enzymes used for genome engineering. While their cleavage specificity can be altered using several protein engineering and selection strategies, their overall targetability is limited by highly specific indirect recognition of the central four base pairs within their recognition sites. In order to examine the physical basis of indirect sequence recognition and to expand the number of such nucleases available for genome engineering, we have determined the target sites, DNA-bound structures, and central four cleavage fidelities of nine related enzymes. Subsequent crystallographic analyses of a meganuclease bound to two noncleavable target sites, each containing a single inactivating base pair substitution at its center, indicates that a localized slip of the mutated base pair causes a small change in the DNA backbone conformation that results in a loss of metal occupancy at one binding site, eliminating cleavage activity.


Assuntos
DNA/química , DNA/metabolismo , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Sequência de Bases , Sítios de Ligação , Clivagem do DNA , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Especificidade por Substrato
15.
Elife ; 52016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27805565

RESUMO

Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/genética , Biologia Computacional , Humanos , Neoplasias/patologia , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química
16.
J Mol Biol ; 342(1): 43-56, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15313606

RESUMO

The structure of I-HmuI, which represents the last family of homing endonucleases without a defining crystallographic structure, has been determined in complex with its DNA target. A series of diverse protein structural domains and motifs, contacting sequential stretches of nucleotide bases, are distributed along the DNA target. I-HmuI contains an N-terminal domain with a DNA-binding surface found in the I-PpoI homing endonuclease and an associated HNH/N active site found in the bacterial colicins, and a C-terminal DNA-binding domain previously observed in the I-TevI homing endonuclease. The combination and exchange of these features between protein families indicates that the genetic mobility associated with homing endonucleases extends to the level of independent structural domains. I-HmuI provides an unambiguous structural connection between the His-Cys box endonucleases and the bacterial colicins, supporting the hypothesis that these enzymes diverged from a common ancestral nuclease.


Assuntos
DNA/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Colicinas/química , Cristalografia por Raios X , DNA/química , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
J Mol Biol ; 332(2): 385-98, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12948489

RESUMO

Human ADP-ribose pyrophosphatase NUDT9 belongs to a superfamily of Nudix hydrolases that catabolize potentially toxic compounds in the cell. The enzyme hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. NUDT9 shares 39% sequence identity with the C-terminal cytoplasmic domain of the ADPR-gated calcium channel TRPM2, which exhibits low but specific enzyme activity. We determined crystal structures of NUDT9 in the presence and in the absence of the reaction product ribose 5'-phosphate. On the basis of these structures and comparison with a bacterial homologue, a model of the substrate complex was built. The structure and activity of a double point mutant (R(229)E(230)F(231) to R(229)I(230)L(231)), which mimics the Nudix signature of the ion channel domain, was determined. Finally, the activities of a pair of additional mutated constructs were compared to the wild-type enzyme. The first corresponds to a minimal Nudix domain missing an N-terminal domain and C-terminal tail; the second disrupts two potential general bases in the active site. NUDT9 contains an N-terminal domain with a novel fold and a catalytic C-terminal Nudix domain. Unlike its closest functional homologue (homodimeric Escherichia coli ADPRase), it is active as a monomer, and the substrate is bound in a cleft between the domains. The structure of the RIL mutant provides structural basis for the reduced activity of the TRPM2 ion channel. The conformation and binding interactions of ADPR substrate are predicted to differ from those observed for E.coli ADPRase; mutation of structurally aligned acidic residues in their active sites produce significantly different effects on catalytic efficiency, indicating that their reaction pathways and mechanisms may have diverged.


Assuntos
Estrutura Terciária de Proteína , Pirofosfatases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , Pirofosfatases/genética , Pirofosfatases/metabolismo , Ribosemonofosfatos/metabolismo , Alinhamento de Sequência
18.
Nat Struct Mol Biol ; 22(2): 167-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25580576

RESUMO

Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high-affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat-protein scaffolds and apply it to leucine-rich-repeat proteins. First, self-compatible building-block modules are designed that, when polymerized, generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom-designed shapes are generated by appropriately combining building-block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat-protein curvature.


Assuntos
Proteínas/química , Cristalografia por Raios X , Proteínas de Repetições Ricas em Leucina , Conformação Proteica , Engenharia de Proteínas/métodos
19.
Nat Biotechnol ; 30(2): 190-2, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267011

RESUMO

Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems.


Assuntos
Enzimas/química , Enzimas/síntese química , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade , Algoritmos , Catálise , Biologia Computacional , Cristalografia por Raios X , Sequências Hélice-Volta-Hélice , Humanos , Modelos Moleculares , Especificidade por Substrato , Jogos de Vídeo
20.
Structure ; 18(6): 734-43, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20541511

RESUMO

The crystal structure of the rare-cutting HNH restriction endonuclease PacI in complex with its eight-base-pair target recognition sequence 5'-TTAATTAA-3' has been determined to 1.9 A resolution. The enzyme forms an extended homodimer, with each subunit containing two zinc-bound motifs surrounding a betabetaalpha-metal catalytic site. The latter is unusual in that a tyrosine residue likely initiates strand cleavage. PacI dramatically distorts its target sequence from Watson-Crick duplex DNA base pairing, with every base separated from its original partner. Two bases on each strand are unpaired, four are engaged in noncanonical A:A and T:T base pairs, and the remaining two bases are matched with new Watson-Crick partners. This represents a highly unusual DNA binding mechanism for a restriction endonuclease, and implies that initial recognition of the target site might involve significantly different contacts from those visualized in the DNA-bound cocrystal structures.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA , Pareamento de Bases , Sequência de Bases , Domínio Catalítico/genética , DNA/química , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Metais/química , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA