Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Neurochem ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348636

RESUMO

Orofacial neuropathic pain is a common symptom induced by orofacial nerve injury caused by a range of trauma or dental and maxillofacial procedures but lacks effective treatment. Circular RNAs (circRNAs) participate in the regulatory processes of neuropathic pain. Nevertheless, the biological roles of circRNAs in orofacial neuropathic pain remain unexplored. In this study, circRNA sequencing and Real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. Notably, a novel circRNA named circ_lrrc49 was identified to be downregulated following chronic constriction injury of the infraorbital nerve (CCI-ION) in mice on day 14. Subsequent RNA Antisense Purification (RAP)-mass spectrometry and RNA immunoprecipitation found a direct interaction between circ_lrrc49 and increased sodium tolerance 1 homolog (Ist1). Western blot (WB) identified decreased expression of Ist1 on day 14 post-CCI-ION. Considering the known relationship between Ist1 and autophagy, LC3-II and p62 were detected to be upregulated, and an accumulation of autophagosomes were observed at the same time point. Besides, the knockdown of circ_lrrc49 by small interfering RNA (siRNA) reduced Ist1 expression, increased LC3-II, p62 levels and autophagosomes amount, and evoked orofacial mechanical hypersensitivity, which could be counteracted by the Ist1 overexpression. Similarly, the knockdown of Ist1 by siRNA also increased LC3-II and p62 levels and evoked orofacial mechanical hypersensitivity without influence on circ_lrrc49. Moreover, autophagy activation by rapamycin alleviated orofacial mechanical hypersensitivity evoked by CCI-ION or circ_lrrc49 knockdown. In conclusion, our data revealed the existence of a circ_lrrc49/Ist1/autophagy signaling axis contributing to the progression of orofacial neuropathic pain. These discoveries reveal the intricate molecular processes that drive orofacial neuropathic pain and identify circ_lrrc49 as a promising target for potential therapeutic interventions.

2.
J Headache Pain ; 25(1): 28, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433184

RESUMO

BACKGROUND: Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS: A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS: Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS: LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.


Assuntos
Neuralgia , RNA Longo não Codificante , Animais , Camundongos , Modelos Animais de Doenças , Hibridização in Situ Fluorescente , RNA Longo não Codificante/genética , Gânglio Trigeminal
3.
J Neurosci Res ; 101(7): 1170-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807930

RESUMO

Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.


Assuntos
Hiperalgesia , Receptor de Glutamato Metabotrópico 5 , Ratos , Camundongos , Masculino , Animais , Hiperalgesia/etiologia , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Nervo Mandibular/metabolismo , Nervo Mandibular/cirurgia
4.
Brain Behav Immun ; 106: 129-146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36038077

RESUMO

The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1ß, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuralgia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Sensibilização do Sistema Nervoso Central , Dor Facial/metabolismo , Dor Facial/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/metabolismo , Ligantes , Camundongos , Neuralgia/patologia , Canais de Potássio , Receptores de N-Metil-D-Aspartato , Fator de Necrose Tumoral alfa/metabolismo
5.
J Oral Rehabil ; 49(2): 195-206, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34714950

RESUMO

BACKGROUND: Orofacial ectopic pain induced by trigeminal nerve injury is a serious complication of dental treatment. C-X-C motif chemokine ligand 1 (CXCL1) and its primary receptor C-X-C motif chemokine receptor 2 (CXCR2) contribute to the development and maintenance of neuropathic pain in the spinal nervous system, but their roles in trigeminal neuropathic sensation are still poorly understood. OBJECTIVES: This study aimed to investigate the exact role of CXCL1 and CXCR2 in the regulation of orofacial ectopic mechanical allodynia and their potential downstream mechanisms in the trigeminal ganglion (TG). METHODS: The head withdrawal threshold (HWT) of C57BL/6 mice was evaluated after inferior alveolar nerve (IAN) transection (IANX). Then, the distribution and expression of CXCL1 and CXCR2, and their potential downstream mechanisms in the TG were further measured using immunohistochemistry, real-time reverse transcription-quantitative polymerase chain reaction and Western blotting. Moreover, the effect of SB225002 (an inhibitor of CXCR2) on mechanical allodynia was examined. The data were analysed using the Student's t test and a analysis of variance (ANOVA). RESULTS: IANX triggered persistent (>21 days) mechanical allodynia and upregulation of CXCL1 and CXCR2 in the TG. In addition, exogenous CXCL1 also lowered the HWT, which was alleviated by CXCR2 and protein kinase C (PKC) antagonists (p < .05). In addition, IANX increased the phosphorylated PKC (p-PKC) levels and decreased the expression of voltage-gated potassium channels (Kv), and these effects were reversed by inhibition of CXCR2 (p < .05). CONCLUSION: Our results demonstrated that CXCR2 participated in orofacial ectopic mechanical allodynia via downregulation of Kv1.4 and Kv1.1 through the PKC signalling pathway. This mechanism may be a potential target in developing a treatment strategy for ectopic orofacial pain.


Assuntos
Hiperalgesia , Gânglio Trigeminal , Animais , Quimiocina CXCL1 , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas , Receptores de Interleucina-8B
6.
J Neurophysiol ; 125(1): 223-231, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326336

RESUMO

This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1ß, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 µM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1ß, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1ß, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1ß, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.


Assuntos
Traumatismos do Nervo Mandibular/metabolismo , Dor/tratamento farmacológico , Receptores de Ocitocina/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canfanos/farmacologia , Interleucina-1beta/metabolismo , Masculino , Traumatismos do Nervo Mandibular/fisiopatologia , Ocitocina/metabolismo , Ocitocina/uso terapêutico , Dor/etiologia , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
7.
Eur J Neurosci ; 51(11): 2205-2218, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31705725

RESUMO

The cross talk between trigeminal ganglion (TG) neurons and satellite glial cells (SGCs) is crucial for the regulation of inflammatory orofacial pain. Substance P (SP) plays an important role by activating neurokinin (NK)-I receptors in this cross talk. The activation of extracellular signal-regulated kinase (ERK) 1/2, protein kinase A (PKA) and protein kinase C (PKC) in neurons and SGCs of peripheral ganglions by peripheral inflammation is associated with inflammatory hypersensitivity. This study tested the hypothesis that SP evoked SP-NK-I receptor positive feedback via the Renin-Angiotensin System/B-Protein Kinase A-Rapidly Accelerates Fibrosarcoma-MEK-Extracellular Signal-Regulated Kinase (RAS/PKA-RAF-MEK-ERK) pathway, which is involved in pain hypersensitivity. Inflammatory models were induced in vivo by injecting Complete Freund's adjuvant (CFA) into the whisker pad of rats. SP was administrated to SGCs in vitro for investigating, whether SP regulates the expression of NK-I receptor in the SGC nucleus. The effects of RAS-RAF-MEK, PKA and PKC pathways in this process were measured by co-incubating SGCs with respective Raf, PKA, PKC and MEK inhibitors in vitro and by pre-injecting these inhibitors into the TG in vivo. SP significantly upregulated NK-I receptor, p-ERK1/2, Ras, B-Raf, PKA and PKC in SGCs under inflammatory conditions. In addition, L703,606 (NK-I receptor antagonist), U0126 (MEK inhibitor), Sorafenib (Raf inhibitor) and H892HCL (PKA inhibitor) but not chelerythrine chloride (PKC inhibitor) significantly decreased NK-I mRNA and protein levels induced by SP. The allodynia-related behavior evoked by CFA was inhibited by pre-injection of L703,606, U0126, Sorafenib and H892HCL into the TG. Overall, SP upregulates NK-I receptor in TG SGCs via PKA/RAS-RAF-MEK-ERK pathway activation, contributing to a positive feedback of SP-NK-I receptor in inflammatory orofacial pain.


Assuntos
Sistema de Sinalização das MAP Quinases , Substância P , Animais , MAP Quinases Reguladas por Sinal Extracelular , Dor Facial/induzido quimicamente , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Substância P/metabolismo
8.
J Cell Physiol ; 234(11): 21199-21210, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31032956

RESUMO

Satellite glial cells (SGCs) activation in the trigeminal ganglia (TG) is critical in various abnormal orofacial sensation in nerve injury and inflammatory conditions. SGCs express several subtypes of P2 purinergic receptors contributing to the initiation and maintenance of neuropathic pain. The P2Y14 receptor, a G-protein-coupled receptor activated by uridine diphosphate (UDP)-glucose and other UDP sugars, mediates various physiologic events such as immune, inflammation, and pain. However, the expression, distribution, and function of P2Y14 receptor in SGCs remains largely unexplored. Our study reported the expression and functional identification of P2Y14 receptor in SGCs. SGCs were isolated from TG of rat, and the P2Y14 receptor expression was examined using immunofluorescence technique. Cell proliferation and viability were examined via cell counting kit-8 experiment. Immunofluorescence demonstrated the presence of P2Y14 receptor in SGCs. Immunofluorescence and western blot showed that UDP-glucose treatment upregulated glial fibrillary acid protein, a common marker for glial activation. Extracellular UDP-glucose enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, which were both abolished by the P2Y14 receptor inhibitor (PPTN). Furthermore, quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay demonstrated that extracellular UDP-glucose significantly enhanced interleukin-1ß (IL-1ß) and chemokine CCL2 (CCL2) release, which was abolished by PPTN and significantly decreased by inhibitors of MEK/ERK (U0126) and p38 (SB202190). Our findings directly proved the functional presence of P2Y14 receptor in SGCs. It was also verified that P2Y14 receptor activation was involved in activating SGCs, phosphorylating MAPKs, and promoting the secretion of IL-1ß and CCL2 via ERK and p38 pathway.


Assuntos
Quimiocina CCL2/metabolismo , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Células Satélites Perineuronais/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
9.
Prostaglandins Other Lipid Mediat ; 143: 106335, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054330

RESUMO

Lysophosphatidic acid (LPA) is a simple phospholipid that exerts pleiotropic effects on numerous cell types by activating its family of cognate G protein-coupled receptors (GPCRs) and participates in many biological processes, including organismal development, wound healing, and carcinogenesis. Bone cells, such as bone marrow mesenchymal stromal (stem) cells (BMSCs), osteoblasts, osteocytes and osteoclasts play essential roles in bone homeostasis and repair. Previous studies have identified the presence of specific LPA receptors in these bone cells. In recent years, an increasing number of cellular effects of LPA, such as the induction of cell proliferation, survival, migration, differentiation and cytokine secretion, have been found in different bone cells. Moreover, some biomaterials containing LPA have shown the ability to enhance osteogenesis. This review will focus on findings associated with LPA functions in these bone cells and present current studies related to the application of LPA in bone regenerative medicine. Further understanding this information will help us develop better strategies for bone healing.


Assuntos
Regeneração Óssea , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Lisofosfolipídeos/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Humanos , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo
10.
Implant Dent ; 28(1): 54-61, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30507652

RESUMO

PURPOSE: Titanium (Ti) is the key material used in dental implants because of its excellent biocompatibility. But wear and corrosion Ti particles had been widely reported to induce inflammation and promote bone absorption. However, little information is known about the damage of Ti particles on neurons. MATERIALS AND METHODS: Trigeminal root ganglion (TRG) neurons were exposed to Ti particles (<5 µm). The electrophysiological properties of 2 main subtypes of voltage-gated potassium channels (VGPCs) (KA and KV) were examined by whole-cell patch-clamp techniques. RESULT: With the presence of 0.25 mg/mL Ti particles, amplitudes of IK, A and IK, V were both obviously inhibited. For IK, A, the activation V1/2 shifted to the depolarizing direction with an increased k value, whereas the inactivation V1/2 showed obvious hyperdepolarizing shifts. For IK, V, 0.5 mg/mL Ti particles produced a depolarizing shift of activation V1/2 with a slower activation rate. No significant changes of its inactivation kinetics were found. CONCLUSION: Titanium (Ti) particles might alter the electrophysiological properties of VGPCs on TRG neurons, which are likely to further influence the excitability of neurons.


Assuntos
Neurônios/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Titânio/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
11.
J Prosthet Dent ; 120(4): 596-602, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29724551

RESUMO

STATEMENT OF PROBLEM: Low-temperature degradation may affect zirconia restorations during their clinical service. Concerns have been raised about the effect of low-temperature degradation on the wear behavior of zirconia. Moreover, the wear resistance of this novel polymer-infiltrated ceramic-network material needs to be better evaluated. PURPOSE: The purpose of this in vitro study was to investigate the influence of aging on the wear resistance of zirconia opposing polymer-infiltrated ceramic-network material. MATERIAL AND METHODS: Twelve specimens for 2 newly developed polymer-based materials (a polymer-infiltrated ceramic-network material VITA ENAMIC and a resin nanocomposite material Lava Ultimate), 2 commonly used glass-ceramic materials (IPS e.max CAD and VITABLOCS Mark II), and 2 conventional composite resin materials (VITA CAD-Temp and PMMA Disk) were tested; human enamel was used as a control group. The wear simulator used was a ball-on-disk type with zirconia balls, with and without autoclaving (134°C, 200 kPa, 20 hours) as antagonists. The vertical loss and volume loss of specimens and the roughness average of zirconia antagonists were measured with a 3-dimensional optical profilometer. Vickers hardness values were determined using a micro-Vickers hardness tester. Data were statistically analyzed with a mixed-model ANOVA for wear loss (vertical loss [µm] and volume loss [mm3]) and roughness average (µm) of zirconia antagonists and with the Kruskal-Wallis test for Vickers hardness values (α=.05). The Spearman correlation coefficient was used to determine the relationship between wear loss and hardness. RESULTS: Results showed that specimens opposing the non-aged zirconia balls demonstrated significantly higher wear than those opposing the aged ones (P<.001). The polymer-infiltrated ceramic-network material VITA ENAMIC group (vertical loss=27.44-33.53 µm, volume loss=0.0198-0.315 mm3) and the resin nanocomposite material Lava Ultimate group (vertical loss=24.42-27.83 µm, volume loss=0.0159-0.0233 mm3) showed lower vertical loss and volume loss than the conventional composite resin groups (vertical loss=43.95-61.87 µm, volume loss=0.0395-0.0593 mm3) but higher wear than the glass-ceramic groups (IPS e.max CAD and VITABLOCS Mark II; vertical loss=8.95-11.47 µm, volume loss=0.0072-0.0094 mm3) and human enamel (vertical loss=9.95-12.32 µm; volume loss=0.0089-0.0103 mm3). The aged zirconia antagonists indicated greater roughness average values than the aged zirconia balls after the wear test (P<.001). Distinct abrasion-induced tracks were observed on the contact surfaces of the aged zirconia antagonists. CONCLUSIONS: Even though zirconia ceramic subjected to low-temperature degradation exhibited increased roughness after the wear test, it was still nonabrasive toward opposing materials. The polymer-infiltrated ceramic-network material showed intermediate wear resistance compared with glass-ceramic and conventional composite resin.


Assuntos
Cerâmica/química , Desgaste de Restauração Dentária , Zircônio/química , Temperatura Baixa , Resinas Compostas/química , Técnicas In Vitro , Nanocompostos/química , Polímeros/química
12.
Cell Biol Int ; 41(1): 84-92, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27778412

RESUMO

Lipopolysaccharide (LPS) plays an important role in bone resorption, which involves numerous cytokines through various signaling pathways. RANKL and interleukin (IL)-6 are two important cytokines that are involved in bone remodeling. The aim of this study was to evaluate the effect of LPS on RANKL and IL-6 gene expression, the relationship of RANKL and IL-6, and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) on IL-6 secretion induced by LPS in MLO-Y4 cells. The cells were stimulated by LPS at different concentrations (1, 10, 100, 500, and 1000 ng/mL) for different durations (0.5, 1, 2, 4, and 8 h and 0.5, 1, 1.5, 2, and 4 h), and the mRNA expressions of RANKL and IL-6 were determined by PCR. In the presence of 100 ng/mL LPS at different time points (0.5, 1, 1.5, 2, and 4 h), IL-6 secretion and ERK1/2 phosphorylation in the cells were determined by ELISA and western blotting, respectively. STAT3 phosphorylation in cells simulated by 100 ng/mL LPS at different time points (0.5, 1, 2, 4, and 8 h) was assessed by western blotting. We found that LPS significantly up-regulated RANKL expression and activated the ERK1/2 pathway to induce IL-6 mRNA expression and protein synthesis in MLO-Y4 cells. However, the increased IL-6 was blocked by pre-treatment of MLO-Y4 cells with the ERK1/2 inhibitor U0126 (10 µM), and the enhanced RANKL was blocked by the STAT3 inhibitor S3I-201 (100 µM). Our results indicate that LPS up-regulates osteocyte expression of RANKL and IL-6, and the increased RANKL is associated with the up-regulation of IL-6, which involves the ERK1/2 pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligante RANK/genética , Regulação para Cima/efeitos dos fármacos , Animais , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Interleucina-6/genética , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
13.
J Prosthet Dent ; 117(1): 150-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27460318

RESUMO

STATEMENT OF PROBLEM: Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. PURPOSE: The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. MATERIAL AND METHODS: A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. RESULTS: The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. CONCLUSION: The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing.


Assuntos
Resinas Compostas/uso terapêutico , Facetas Dentárias , Ítrio/uso terapêutico , Zircônio/uso terapêutico , Resinas Compostas/normas , Falha de Restauração Dentária , Análise do Estresse Dentário , Dentina , Humanos , Técnicas In Vitro , Resistência à Tração , Ítrio/normas , Zircônio/normas
14.
Biochem Biophys Res Commun ; 457(3): 479-84, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25603054

RESUMO

Derived from mature adipocytes, dedifferentiated fat (DFAT) cells represent a special group of multipotent cells. However, their phenotype and cellular nature remain unclear. Our study found that human DFAT cells adopted perivascular characteristics and behaviors. Flow cytometry and immunofluorescent staining revealed that human DFAT cells positively expressed markers highly related to perivascular cell lineages, such as CD140b, NG2 and desmin, but were negative for common endothelial markers, including CD31, CD34, and CD309. Furthermore, DFAT cells displayed vascular network formation ability in Matrigel, and they noticeably promoted and stabilized the vessel structures formed by human umbilical vascular endothelial cells (HUVECs) in vitro. These results provide novel evidence on the pericyte nature of human DFAT cells, further supporting the recent model for the perivascular origin of adult stem cells, in which tissue-specific progenitor cells in mesenchymal tissues associate with blood vessels, exhibiting perivascular characteristics and functions.


Assuntos
Adipócitos/citologia , Células-Tronco Adultas/citologia , Desdiferenciação Celular , Células-Tronco Multipotentes/citologia , Adipócitos/metabolismo , Adulto , Células-Tronco Adultas/metabolismo , Antígenos/metabolismo , Antígenos CD/metabolismo , Antígeno CD146/metabolismo , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Multipotentes/metabolismo , Neovascularização Fisiológica , Fenótipo , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
15.
Electromagn Biol Med ; 34(4): 285-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24712748

RESUMO

AIM: To study the effects of static magnetic fields (SMF) on the electrophysiological properties of voltage-gated sodium and calcium channels on trigeminal ganglion (TRG) neurons. METHODS: Acutely dissociated TRG neurons of neonatal SD rats were exposed to 125-mT and 12.5-mT SMF in exposure devices and whole-cell patch-clamp recordings were carried out to observe the changes of voltage-gated sodium channels (VGSC) and calcium channels (VGCC) currents, while laser scanning confocal microscopy was used to detect intracellular free Ca(2+) concentration in TRG neurons, respectively. RESULTS: (1) No obvious change of current-voltage (I-V) relationship and the peak current densities of VGSC and VGCC currents were found when TRG neurons were exposed to 125-mT and 12.5-mT SMF. However, the activation threshold, inactivation threshold and velocity of the channel currents above were significantly altered by 125-mT and 12.5-mT SMF. (2) The fluctuation of intracellular free Ca(2+) concentration within TRG neurons were slowed by 125-mT and 12.5-mT SMF. When SMF was removed, the Ca(2+) concentration level showed partial recovery in the TRG neurons previously exposed by 125-mT SMF, while there was a full recovery found in 12.5-mT-SMF-exposed neurons. CONCLUSIONS: Moderate-intensity SMF could affect the electrophysiological characteristics of VGCS and VGCC by altering their activation and inactivation threshold and velocity. The fluctuations of intracellular free Ca(2+) caused by SMF exposure were not permanent in TRG neurons.


Assuntos
Canais de Cálcio/metabolismo , Campos Magnéticos , Neurônios/metabolismo , Gânglio Trigeminal/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/química , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
16.
Biochem Biophys Res Commun ; 444(4): 543-8, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486314

RESUMO

Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.


Assuntos
Adipócitos/citologia , Células-Tronco Multipotentes/citologia , Adulto , Antígenos CD/análise , Diferenciação Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Fenótipo
17.
Cell Biol Int ; 38(5): 591-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375569

RESUMO

IL-6 has a dual role in bone remodelling. The ERK1/2 pathway partially upregulated IL-6 secretion in osteocyte-like MLO-Y4 cells exposed to CCF. We have now investigated the possible role of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway in the CCF-induced IL-6 expression. MLO-Y4 cells were treated with CCF 2,000 µstrain, 2 Hz, or 10, 30 min, 1, 3 and 6 h. IL-6 expression, Akt and ERK1/2 and PI3K/Akt phosphorylation were determined by RT-PCR, ELISA and Western blotting. Inhibition of PI3K/Akt with LY294002 or ERK1/2 with PD98059 significantly attenuated IL-6 upregulation, and IL-6 expression was abolished by inhibiting both pathways. Inhibition of one pathway downregulated the other's phosphorylation level. In conclusion, concomitant activation of PI3K/Akt and ERK1/2 pathways mediated IL-6 expression in MLO-Y4 cells under CCF.


Assuntos
Força Compressiva/fisiologia , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Osteócitos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/fisiologia , Estresse Mecânico
18.
Odontology ; 102(2): 279-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23575885

RESUMO

The aim of this study was to examine defect depths and volumes at the resin composite-dentin (R/D) interface after air polishing with different particles and spray angles. Samples were 54 dentin specimens that were formed in saucer-shaped cavities filled with resin composite. Each specimen was air polished with either sodium bicarbonate (NaHCO3) or one of two glycine (Gly) powders. The air polisher was set at angles of 90° to the interface and at 45° to the interface from both the dentin and resin composite sides. Air polishing with Gly powder produced defects with less depth and volume than NaHCO3 powder (p < 0.05). Air polishing with a spray angle of 45° to the interface from the resin composite side produced fewer defects (p < 0.05) than polishing from the dentin side. Air polishing to the R/D interface from the resin composite side produced fewer defects to the interface because the hardness of the resin composite was higher than that of dentin.


Assuntos
Resinas Compostas , Polimento Dentário , Dentina , Humanos
19.
Int J Mol Sci ; 15(2): 2400-12, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24518683

RESUMO

In this study, a novel dental composite based on the unsaturated bismethylene spiroorthocarbonate expanding monomer 3,9-dimethylene-1,3,5,7-tetraoxa-spiro[5,5]undecane (BMSOC) and bisphenol-S-bis(3-meth acrylate-2-hydroxypropyl)ether (BisS-GMA) was prepared. CQ (camphorquinone) of 1 wt % and DMAEMA (2-(dimethylamino)ethyl methacrylate) of 2 wt % were used in a photoinitiation system to initiate the copolymerization of the matrix resins. Distilled water contact angle measurements were performed for the wettability measurement. Degree of conversion, volumetric shrinkage, contraction stress and compressive strength were measured using Fourier Transformation Infrared-FTIR spectroscopy, the AccuVol and a universal testing machine, respectively. Within the limitations of this study, it can be concluded that the resin composites modified by bismethylene spiroorthocarbonate and BisS-GMA showed a low volumetric shrinkage at 1.25% and a higher contact angle. The lower contraction stress, higher degree of conversion and compressive strength of the novel dental composites were also observed.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Materiais Dentários/química , Resinas Compostas/química , Teste de Materiais , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Molhabilidade
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(3): 619-24, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25219246

RESUMO

This paper is aimed to investigate the effect of rest-inserted loading on the mechanosensitivity of osteocytes. In the investigation, cultured MLO-Y4 osteocyte-like cells were strained on cyclic compressive force (CCF) by the self-made compressive loading device. Then we observed the effect of different rest periods-inserted loading (5 s, 15 s, 30 s, respectively) on the mechanosensitivity of osteocytes. We then determined the levels of secreted nitric oxide (NO) and prostaglandin E2 (PGE2) by Griess method and enzyme linked immunosorbent assay (ELISA), respectively. We then stained the cytoskeleton F-actin using immunofluorescence. We found that the expressions of NO and PGE2 in rest-inserted strained groups (> 15 s) were significantly increased compared to those in the continuous strained group. And rest-inserted loading promoted the parallel alignment of stress fibers. It indicates that rest-inserted loading could promote the mechanosensitivity of osteocytes, and this might be related to the parallel alignment of stress fibers.


Assuntos
Dinoprostona/metabolismo , Óxido Nítrico/metabolismo , Osteócitos/metabolismo , Estresse Mecânico , Actinas/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Citoesqueleto/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA