RESUMO
The semihydrogenation of phenylacetylene to styrene represents an important process for optimizing the polystyrene production and also a model reaction for the evaluation of selective hydrogenation catalysts. Although the alloying strategy and surface engineering for noble metal (particularly for Pd) catalysts can effectively inhibit the overhydrogenation of styrene, the selectivity of phenylacetylene semihydrogenation to styrene is generally below 95% near the full conversion. Here, we demonstrate the electronic modulation of Pd-based bimetallic nanocluster catalysts based on the strong metal-support interactions for improving the catalytic selectivity for phenylacetylene semihydrogenation. A series of Pd-M (M = Fe, Co, Ni, Cu, Ga) bimetallic nanoclusters of â¼2 nm are immobilized on mesoporous sulfur-doped carbon (meso_S-C) supports, which exhibit a high selectivity of >97% for the semihydrogenation of phenylacetylene to styrene. The strong interaction between metal and the meso_S-C supports enables the modulation of electronic structure of the bimetallic nanoparticles and thus leads to the selectivity enhancement for the phenylacetylene semihydrogenation.
RESUMO
Catalytic biomass conversions are sustainable processes to produce value-added fuels and chemicals but need stable catalysts that can tolerate harsh hydrothermal conditions. Herein, we report a hydrothermally stable catalyst by alloying Pt with a high-melting-point metal Nb. The Pt/Nb alloy catalysts are prepared by H2 reduction at a high temperature of 900 °C with a high-surface-area carbon black support, which can suppress metal sintering at high temperatures and thus lead to small-sized alloyed Pt/Nb particles of only 2.2 nm. Taking the advantages of surface acid property provided by the Nb sites and the size effect, the prepared C-supported small-sized Pt/Nb alloy catalysts exhibit attractive activities for the hydrogenation of levulinic acid into γ-valerolactone and the water-gas shift reaction. More significantly, benefiting from the inherent stability of high-melting-point Nb, the Pt/Nb alloy catalysts show much enhanced hydrothermal stability compared to commercial Pt/C and Ru/C catalysts.
RESUMO
Small-sized bimetallic nanoparticles that integrate the advantages of efficient exposure of the active metal surface and optimal geometric/electronic effects are of immense interest in the field of catalysis, yet there are few universal strategies for synthesizing such unique structures. Here, we report a novel method to synthesize sub-2 nm bimetallic nanoparticles (Pt-Co, Rh-Co, and Ir-Co) on mesoporous sulfur-doped carbon (S-C) supports. The approach is based on the strong chemical interaction between metals and sulfur atoms that are doped in the carbon matrix, which suppresses the metal aggregation at high temperature and thus ensures the formation of small-sized and well alloyed bimetallic nanoparticles. We also demonstrate the enhanced catalytic performance of the small-sized bimetallic Pt-Co nanoparticle catalysts for the selective hydrogenation of nitroarenes.