Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(19): e2307975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098446

RESUMO

Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.

2.
Small ; 20(28): e2310857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349039

RESUMO

Photocatalytic oxidative coupling of CH4 (OCM) is a promising CH4 conversion process that can achieve efficient methane conversion with the assistance of O2. It remains to be highly challenging to improve the photocatalytic OCM activity from catalyst design and to deepen the understanding of the reactant activation in the OCM process. In this work, the Au-loaded ZnAl-layered double hydroxides (LDHs) with and without oxygen vacancy are constructed (denoted as Au/ZnAl and Au/ZnAl-v), respectively. When applied for photocatalytic OCM, the Au/ZnAl-v shows a CH4 conversion rate of 8.5 mmol g-1 h-1 with 92% selectivity of C2H6 at 40 °C, outperforming most reported photocatalytic OCM systems at low temperature reported in the literature. Furthermore, the catalytic performance of Au/ZnAl-v can be stable for 100 h. In contrast, the An/ZnAl exhibits a CH4 conversion rate of 0.8 mmol g-1 h-1 with 46% selectivity of C2H6. Detailed characterizations and DFT calculation studies reveal that the introduced Ov sites on Au/ZnAl-v are able to activate O2, and the resulting superoxide radical O2·- greatly promotes the activation of CH4. The coupling of CH3· groups with the assistance of Au cocatalyst leads to the formation of C2H6 with high photocatalytic activity.

3.
Small ; 19(50): e2304604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635099

RESUMO

Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .

4.
Small ; 19(21): e2300581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823447

RESUMO

Electrocatalytic reduction of CO2 to high-value-added chemicals provides a feasible path for global carbon balance. Herein, the fabrication of NiNP x @NiSA y -NG (x,y = 1, 2, 3; NG = nitrogen-doped graphite) is reported, in which Ni single atom sites (NiSA ) and Ni nanoparticles (NiNP ) coexist. These NiNP x @NiSA y -NG presented a volcano-like trend for maximum CO Faradaic efficiency (FECO ) with the highest point at NiNP2 @NiSA2 -NG in CO2 RR. NiNP2 @NiSA2 -NG exhibited ≈98% of maximum FECO and a large current density of -264 mA cm-2 at -0.98 V (vs. RHE) in the flow cell. In situ experiment and density functional theory (DFT) calculations confirmed that the proper content of NiSA and NiNP balanced kinetic between proton-feeding and CO2 hydrogenation. The NiNP in NiNP2 @NiSA2 -NG promoted the formation of H* and reduced the energy barrier of *CO2 hydrogenation to *COOH, and CO desorption can be efficiently facilitated by NiSA sites, thereby resulting in enhanced CO2 RR performance.

5.
Small ; 19(41): e2303420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312653

RESUMO

Direct and selective oxidation of benzene to phenol is a long-term goal in industry. Although great efforts have been made in homogenous catalysis, it still remains a huge challenge to drive this reaction via heterogeneous catalysts under mild conditions. Herein, a single-atom Au loaded MgAl-layered double hydroxide (Au1 -MgAl-LDH) with a well-defined structure, in which the Au single atoms are located on the top of Al3+ with Au-O4 coordination as revealed by extended x-ray-absorption fine-structure (EXAFS)and density-functional theory (DFT)calculation is reported. The photocatalytic results prove the Au1 -MgAl-LDH is capable of driving benzene oxidation reaction with O2 in water, and exhibits a high selectivity of 99% for phenol. While contrast experiment shows a ≈99% selectivity for aliphatic acid with Au nanoparticle loaded MgAl-LDH (Au-NP-MgAl-LDH). Detailed characterizations confirm that the origin of the selectivity difference can be attributed to the profound adsorption behavior of substrate benzene with Au single atoms and nanoparticles. For Au1 -MgAl-LDH, single Au-C bond is formed in benzene activation and result in the production of phenol. While for Au-NP-MgAl-LDH, multiple AuC bonds are generated in benzene activation, leading to the crack of CC bond.

6.
Chimia (Aarau) ; 77(11): 733-741, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047840

RESUMO

Heavy metal contamination in soil, which is harmful to both ecosystem and mankind, has attracted worldwide attention from the academic and industrial communities. However, the most-widely used remediation technologies such as electrochemistry, elution, and phytoremediation. suffer from either secondary pollution, long cycle time or high cost. In contrast, in situ mineralization technology shows great potential due to its universality, durability and economical efficiency. As such, the development of mineralizers with both high efficiency and low-cost is the core of in situmineralization. In 2021, the concept of 'Super-Stable Mineralization' was proposed for the first time by Kong et al.[1] The layered double hydroxides (denoted as LDHs), with the unique host-guest intercalated structure and multiple interactions between the host laminate and the guest anions, are considered as an ideal class of materials for super-stable mineralization. In this review, we systematically summarize the application of LDHs in the treatment of heavy metal contaminated soil from the view of: 1) the structure-activity relationship of LDHs in in situ mineralization, 2) the advantages of LDHs in mineralizing heavy metals, 3) the scale-up preparation of LDHs-based mineralizers and 4) the practical application of LDHs in treating contaminated soil. At last, we highlight the challenges and opportunities for the rational design of LDH-based mineralizer in the future.

7.
Angew Chem Int Ed Engl ; 62(45): e202311696, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37711060

RESUMO

The key issue in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) is to understand the synergistic mechanism involving the protons deintercalation of catalyst and the adsorption of the substrate. In this study, a Pd/NiCo catalyst was fabricated by modifying Pd clusters onto a Co-doped Ni(OH)2 support, in which the introduction of Co induced lattice distortion and optimized the energy band structure of Ni sites, while the Pd clusters with an average size of 1.96 nm exhibited electronic interactions with NiCo support, resulting in electron transfer from Pd to Ni sites. The resulting Pd/NiCo exhibited low onset potential of 1.32 V and achieved a current density of 50 mA/cm2 at only 1.38 V. Compared to unmodified Ni(OH)2 , the Pd/NiCo achieved an 8.3-fold increase in peak current density. DFT calculations and in situ XAFS revealed that the Co sites affected the conformation and band structure of neighboring Ni sites through CoO6 octahedral distortion, reducing the proton deintercalation potential of Pd/NiCo and promoting the production of Ni3+ -O active species accordingly. The involvement of Pd decreased the electronic transfer impedance, and thereby accelerated Ni3+ -O formation. Moreover, the Pd clusters enhanced the adsorption of HMF through orbital hybridization, kinetically promoting the contact and reaction of HMF with Ni3+ -O.

8.
Chemistry ; 28(6): e202103601, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34873760

RESUMO

The low-cost, high-abundance and durable layered double hydroxides (LDHs) have been considered as promising electrocatalysts for oxygen evolution reaction (OER). However, the easy agglomeration of lamellar LDHs in the aqueous phase limits their practical applications. Herein, a series of ternary NiCoFe LDHs were successfully fabricated on nickel foam (NF) via a simple electrodeposition method. The as-prepared Ni(Co0.5 Fe0.5 )/NF displayed an unique nanoarray structural feature. It showed an OER overpotential of 209 mV at a current density of 10 mA cm-2 in alkaline solution, which was superior to most systems reported so far. As evidenced by the XPS and XAFS results, such excellent performance of Ni(Co0.5 Fe0.5 )/NF was attributed to the higher Co3+ /Co2+ ratio and more defects exposed, comparing with Ni(Co0.5 Fe0.5 )-bulk and Ni(Co0.5 Fe0.5 )-mono LDHs prepared by conventional coprecipitation method. Furthermore, the ratio of Co to Fe could significantly tune the Co electronic structure of Ni(Cox Fe1-x )/NF composites (x=0.25, 0.50 and 0.75) and affect the electrocatalytic activity for OER, in which Ni(Co0.5 Fe0.5 )/NF showed the lowest energy barrier for OER rate-determining step (from O* to OOH*). This work proposes a facile method to develop high-efficiency OER electrocatalysts.

9.
Nanoscale Adv ; 6(9): 2363-2370, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694473

RESUMO

Herein, we report the successful fabrication of a series of transition metal doped Ni nanoparticles (NPs) coordinated with Ni single atoms in nitrogen-doped carbon nanotubes (denoted as Ni1+NPsM-NCNTs, M = Mn, Fe, Co, Cu and Zn; Ni1 = Ni single atom). X-ray absorption fine structure reveals the coexistence of Ni single atoms with Ni-N4 coordination and NiM NPs. When applied for electrocatalytic CO2RR, the Ni1+NPsM-NCNT compounds show the Faradaic efficiency of CO (FECO) with a volcano-like tendency of Mn < Fe ≈ Co < Zn < Cu, in which the Ni1+NPsCu-NCNT exhibits the highest FECO of 96.92%, a current density of 171.25 mA cm-2 and a sustainable stability over 24 hours at a current density of 100 mA cm-2, outperforming most reported examples in the literature. Detailed experiments and theoretical calculations reveal that for Ni1+NPsCu-NCNTs, the electron transfer from NiCu NPs to Ni single atoms strengthens the adsorption of *COOH intermediates. Moreover, the d-band center of Ni-N in Ni1+NPsCu-NCNT is upshifted, providing stronger binding with the reaction intermediates of *COOH, whereas the NiCu NPs increase the Gibbs free energy change of the Volmer step, suppressing the competitive HER.

10.
Nanoscale ; 15(28): 11867-11874, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37395470

RESUMO

Introducing different active sites into heterogeneous catalysts provides new prospects to address the challenges in single-atom catalysis. Herein, the Au single atoms together and the Au nanoparticles were loaded onto NiAl-LDH by a facile impregnation-reduction method for the first time, resulting in the formation of Au1+n-NiAl-LDH, in which abundant Au single atoms are located around the Au nanoparticles with ∼5 nm size. When applied in the electrocatalytic benzyl alcohol oxidation reaction (BAOR), the as-prepared Au1+n-NiAl-LDH exhibits a remarkable selectivity of 91% and 177.63 µmol for benzaldehyde in 5 hours, while in contrast examples using solely Au single atom loaded NiAl-LDH (Au1-NiAl-LDH) and solely Au nanoparticle loaded NiAl-LDH (Aun-NiAl-LDH) can only realize 87.36 µmol production (75% selectivity) and 48.90 µmol production (28% selectivity) of benzaldehyde, respectively. Such a dramatic difference can be attributed to the synergistic effects of Au single atoms and Au nanoparticles. DFT calculation results reveal that for Au1+n-NiAl-LDH, Au single atoms promote the dehydrogenation capacity of LDH laminates, while Au nanoparticles offer adsorption sites for the electrophilic attachment of benzyl alcohol.

11.
ACS Appl Mater Interfaces ; 15(27): 32281-32290, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364053

RESUMO

Acid-base bifunctional catalysts have attracted increasing attention due to the improved overall efficiency of synthetic reactions. Herein, we reported the successful fabrication of a PW12@NiCo-LDH acid-base bifunctional catalyst by using the in-situ encapsulation-reassembly strategy. The evolution process of morphology and structure was monitored carefully by various time-dependent characterizations. X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations demonstrated that the terminal oxygen of PW12 in PW12@NiCo-LDH preferred to assemble with the oxygen vacancies on NiCo-LDH. When applied for deacetalization-Knoevenagel condensation, the PW12@NiCo-LDH displayed >99% conversion of benzaldehyde dimethyl acetal (BDMA) and >99% yield of ethyl α-cyanocinnamate (ECC). Moreover, PW12@NiCo-LDH can be recycled at least 10 cycles without obvious structural change, which can be attributed to the confinement of PW12 into the NiCo-LDH nanocage. Such excellent catalytic activity of PW12@NiCo-LDH was benefited from the short mass transfer pathway between acid sites and base sites, which was caused by the stable assembly between PW12 and NiCo-LDH.

12.
Neural Regen Res ; 18(3): 568-576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018179

RESUMO

Recent studies have shown that chlorogenic acid (CGA), which is present in coffee, has protective effects on the nervous system. However, its role in neonatal hypoxic-ischemic brain injury remains unclear. In this study, we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA. We found that CGA intervention effectively reduced the volume of cerebral infarct, alleviated cerebral edema, restored brain tissue structure after injury, and promoted axon growth in injured brain tissue. Moreover, CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival. In addition, changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA. Furthermore, CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2. In summary, our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis, providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury.

13.
ACS Appl Mater Interfaces ; 14(14): 16369-16378, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35354278

RESUMO

Layered double hydroxides (LDHs) are considered a promising catalyst for photocatalytic CO2 reduction due to their broad photoresponse, facile channels for electron transfer, and the presence of abundant defects. Herein, we reported for the first time the fabrication of a novel photocatalyst MIL-100@NiMn-LDH with a hierarchical architecture by selecting MIL-100 (Mn) as a template to provide Mn3+ for the in situ growth of ultrathin NiMn-LDH nanosheets. Moreover, the in situ growth strategy exhibited excellent universality toward constructing MIL-100@LDH hierarchical architectures. When applied in the photocatalytic CO2 reduction reaction, the as-prepared MIL-100@NiMn-LDH exhibited excellent CH4 selectivity of 88.8% (2.84 µmol h-1), while the selectivity of H2 was reduced to 1.8% under visible light irradiation (λ > 500 nm). Such excellent catalytic performance can be attributed to the fact that (a) the MIL-100@NiMn-LDH hierarchical architectures with exposed catalytic active sites helped to enhance the CO2 adsorption and activation and (b) the presence of rich oxygen vacancies and coordinately unsaturated metal sites in MIL-100@NiMn-LDH that optimized the band gap and accelerated the separation/transport of photoinduced charges.

14.
ACS Appl Mater Interfaces ; 14(19): 22186-22196, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510903

RESUMO

Polyoxometalates (POMs) have shown great potential in sodium-ion batteries (SIBs) due to their reversible multielectron redox property and high ionic conductivity. Currently, POM-based SIBs suffer from the irreversible trapping and sluggish transmission kinetics of Na+. Herein, a series of POMs/metal-organic frameworks (MOFs)/graphene oxide (GO) (MOFs = MIL-101, MIL-53, and MIL-88B; POM = [PMo12O40]3-, denoted as PMo12) composites are developed as SIB anode materials for the first time. Unlike MIL-101 with large pore structures, the pores in flexible MIL-53 and MIL-88B swell spontaneously upon the accommodation of PMo12. Particularly, the PMo12/MIL-88B/GO composites deliver an excellent specific capacity of 214.2 mAh g-1 for 600 cycles at 2.0 A g-1, with a high initial Coulombic efficiency (ICE) of 51.0%. The so-called "breathing effect" of flexible MOFs leads to the relatively tight confinement space for PMo12, which greatly modulates its electronic structure, affects the adsorption energy of Na+, and eventually reduces the trapping of sodium ions. Additionally, the straight and multidimensional channels in MIL-88B significantly accelerate ion diffusion, inducing favored energetic kinetics and thus generating high-rate performance.

15.
ACS Appl Mater Interfaces ; 14(1): 1169-1176, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935340

RESUMO

Polyoxometalate (POM)-based materials are considered as promising candidates for lithium-ion batteries (LIBs) due to their stable and well-defined molecular structure and reversible multielectron redox properties. Currently, POM-based electrode materials suffer from high interfacial resistance and low uniformity. Herein, we reported a self-supported POM-based anode material for LIBs by electrodepositing H3PMo12O40 (PMo12) and aniline on carbon cloth (CC) for the first time. The as-prepared polyaniline (PANi)-PMo12/CC composite exhibited an excellent reversible capacity of 1092 mA h g-1 for 200 cycles at 1 A g-1. Such an outstanding performance was attributed to the rapid electron transfer and Li+ diffusion stemming from the exposure of more active sites by the self-supported structure, the strong electrostatic interaction, and electronic structure reconfiguration between the active PMo12 cluster and conductive PANi polymer. This work provides insight into the electronic structure engineering of highly efficient LIB anode materials.

16.
ACS Appl Mater Interfaces ; 14(33): 37823-37832, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960145

RESUMO

The removal of CrIII ions from contaminated wastewater is of great urgency from both environmental protection and resource utilization perspectives. Herein, we developed a superstable mineralization method to immobilize Cr3+ ions from wastewater using CuO as a stabilizer, leading to the formation of a CuCr layered double hydroxide (denoted as CuCr-LDH). CuO showed a superior Cr3+ removal performance with a removal efficiency of 97.97% and a maximum adsorption capacity of 207.6 mg/g in a 13000 mg/L Cr3+ ion solution. In situ and ex situ X-ray absorption fine structure characterizations were carried out to elucidate the superstable mineralization mechanism. Two reaction pathways were proposed including coprecipitation-dissolution and topological transformation. The mineralized product of CuCr-LDH can be reused for the efficient removal of organic dyes, and the adsorption capacities were up to 248.0 mg/g for Congo red and 240.1 mg/g for Evans blue, respectively. Moreover, CuCr-LDH exhibited a good performance for photocatalytic CO2 reduction to syngas (H2/CO = 2.66) with evolution rates of 54.03 µmol/g·h for CO and of 143.94 µmol/g·h for H2 under λ > 400 nm, respectively. More encouragingly, the actual tanning leather Cr3+ wastewater treated by CuO showed that Cr3+ can reduce from 3438 to 0.06 mg/L, which was much below discharge standards (1.5 mg/L). This work provides a new approach to the mineralization of Cr3+ ions through the "salt-oxide" route, and the findings reported herein may guide the future design of highly efficient mineralization agents for heavy metals.

17.
Nanoscale ; 13(3): 1869-1874, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439208

RESUMO

Noble metal-based catalysts have attracted huge attention owing to their intriguing activity and selectivity. Revealing noble metal active sites and keeping them in a form of stable and high loading are crucial to improving the catalytic performance and understanding the reaction mechanism. Herein, a feasible preparation method was used to synthesize a Rh-based ultrathin NiFe layered double hydroxide (Rh/NiFe). The detailed study proved that the existence form of Rh atoms is atomically dispersed. Moreover, extended X-ray absorption fine structure (EXAFS) with theoretical calculation of X-ray absorption near-edge structure (XANES) and density functional theory (DFT) were used to identify at the atomic level the precise location and coordination environment of the introduced Rh atoms. It was found that Rh atoms are doped in the LDH layer in a coplanar position with Ni and Fe atoms. With a 5.4 wt% loading amount of Rh, the modified catalyst of Rh/NiFe-5.4 requires 80 mV less than unmodified ultrathin NiFe layered double hydroxide (NiFe) for hydrazine electrooxidation. The XAFS fitting revealed that the doping of Rh atoms results in the distortion of the laminate and then introduces certain defects, which may be attributed to electron transport, thus endowing them with exceptional electrocatalytic performance.

18.
RSC Adv ; 10(39): 22881-22890, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520331

RESUMO

In this work, a Cu-based nanosheet metal-organic framework (MOF), HKUST-1, was synthesised using a solvent method at room temperature. Its morphology, structure and composition were characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman spectroscopy, nitrogen adsorption and desorption isotherms, energy dispersive X-ray spectroscopy (EDS) and elemental analysis (EA). This material was then loaded onto the surface of an indium tin oxide (ITO) electrode to catalyse the electrochemical oxidation of ascorbic acid (AA). An equal-electron-equal-proton reaction was deduced from the pH investigation, and a diffusion-controlled process was reinforced by the dynamics study. Under optimal conditions, the oxidation peak current at +0.02 V displayed a linear relationship with the concentration of AA within the ranges of 0.01-25 and 25-265 mM, respectively. The limit of detection (LOD) was 3 µM at S/N of 3. The superb response could be ascribed to the porous nanosheet structure of HKUST-1, which enhanced both the effective surface area and the electron transfer ability significantly. Moreover, the novel AA sensor demonstrated good reproducibility, favourable stability and high sensitivity towards glucose, uric acid (UA), dopamine (DA) and several amino acids. It was also successfully applied to the real sample testing of various AA-containing tablets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA