Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Med Teach ; 42(11): 1243-1249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772756

RESUMO

INTRODUCTION: Team-based learning (TBL) is gradually being integrated into Chinese medical education. This study reports its current application status in Chinese medical schools, as well as the underlying challenges and strategies to improve TBL application. METHOD: We screened publication databases and surveys to investigate TBL usage and concerns regarding TBL application by Chinese medical educators. Articles published by 79 Chinese medical schools include 163 articles among 20 topic areas of basic medicine and 226 articles among 16 clerkship disciplines. The opinions of 123 Chinese medical teachers were solicited from 46 medical schools in 26 provinces/municipalities. RESULTS: Approximately less than half of Chinese medical schools used TBL in basic medicine or clerkship disciplines. Among these, only 10% of schools reported TBL usage in both clerkship disciplines and basic medicine. Both quantitative and qualitative results revealed that public awareness of TBL, executive support, professional training, sharing of resources and integration of multiple disciplines are critical factors in facilitating TBL application, and in recruiting and developing TBL teachers. CONCLUSION: TBL application in Chinese medical education is limited. Executive/financial support and establishment of a platform to provide technical support, share resources and regulate TBL practice quality will facilitate TBL application in Chinese medical education.


Assuntos
Educação Médica , Aprendizagem Baseada em Problemas , Atitude , China , Processos Grupais , Humanos , Faculdades de Medicina
2.
Stem Cells ; 36(4): 527-539, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29315990

RESUMO

Tendon repair is a clinical challenge because of the limited understanding on tenogenesis. The synthesis of type I collagen (Collagen I) and other extracellular matrix are essential for tendon differentiation and homeostasis. Current studies on tenogenesis focused mostly on the tenogenic transcriptional factors while the signaling controlling tenogenesis on translational level remains largely unknown. Here, we showed that mechanistic target of rapamycin (mTOR) signaling was activated by protenogenic growth factor, transforming growth factors beta1, and insulin-like growth factor-I. The expression of mTOR was upregulated during tenogenesis of mesenchymal stem cells (MSCs). Moreover, mTOR was downregulated in human tendinopathy tissues and was inactivated upon statin treatment. Both inhibition and depletion of AKT or mTOR significantly reduced type I collagen production and impaired tenogenesis of MSCs. Tendon specific-ablation of mTOR resulted in tendon defect and reduction of Collagen I. However, there is no evident downregulation of tendon associated collagens at the transcription level. Our study demonstrated that AKT-mTOR axis is a key mediator of tendon differentiation and provided a novel therapeutic target for tendinopathy and tendon injuries. Stem Cells 2018;36:527-539.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Tendões/metabolismo , Animais , Células-Tronco Mesenquimais/citologia , Camundongos , Tendões/citologia , Fator de Crescimento Transformador beta1/metabolismo
3.
Stem Cells ; 34(4): 1083-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851078

RESUMO

Calcification of soft tissues, such as heart valves and tendons, is a common clinical problem with limited therapeutics. Tissue specific stem/progenitor cells proliferate to repopulate injured tissues. But some of them become divergent to the direction of ossification in the local pathological microenvironment, thereby representing a cellular target for pharmacological approach. We observed that HIF-2alpha (encoded by EPAS1 inclined form) signaling is markedly activated within stem/progenitor cells recruited at calcified sites of diseased human tendons and heart valves. Proinflammatory microenvironment, rather than hypoxia, is correlated with HIF-2alpha activation and promoted osteochondrogenic differentiation of tendon stem/progenitor cells (TSPCs). Abnormal upregulation of HIF-2alpha served as a key switch to direct TSPCs differentiation into osteochondral-lineage rather than teno-lineage. Notably, Scleraxis (Scx), an essential tendon specific transcription factor, was suppressed on constitutive activation of HIF-2alpha and mediated the effect of HIF-2alpha on TSPCs fate decision. Moreover, pharmacological inhibition of HIF-2alpha with digoxin, which is a widely utilized drug, can efficiently inhibit calcification and enhance tenogenesis in vitro and in the Achilles's tendinopathy model. Taken together, these findings reveal the significant role of the tissue stem/progenitor cells fate decision and suggest that pharmacological regulation of HIF-2alpha function is a promising approach for soft tissue calcification treatment.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Calcinose/tratamento farmacológico , Terapia de Tecidos Moles , Tendão do Calcâneo/crescimento & desenvolvimento , Tendão do Calcâneo/patologia , Idoso , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Calcinose/genética , Calcinose/patologia , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Condrogênese/genética , Digoxina/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Cardiopatia Reumática/genética , Cardiopatia Reumática/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
4.
FEMS Yeast Res ; 11(3): 292-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21208374

RESUMO

A rapid and convenient method is presented for unmarked gene deletions in Pichia pastoris. Cre/mutated lox system, Zeocin(®) (Invitrogen) resistance marker and homologous arms were spliced together by fusion PCR to generate the gene disruption cassettes (homologous region-lox71-Cre-ZeoR-lox66-homologous region), which could be integrated into the P. pastoris genome via homologous recombination. After transferring double-cross-over recombinants to methanol induction medium, transient expression of Cre recombinase caused the recombination of lox71-Cre-ZeoR-lox66 fragment into a double-mutant lox72 site, thus excising the Cre-ZeoR cassette from the P. pastoris genome. As the double-mutant lox72 site displays strongly reduced binding affinity for Cre recombinase, this method could be used sequentially to disrupt P. pastoris genes without introducing selectable markers. The effectiveness of this strategy was verified by introducing both single and double gene deletions into the P. pastoris genome.


Assuntos
Proteínas Fúngicas/genética , Deleção de Genes , Marcadores Genéticos/genética , Integrases/metabolismo , Pichia/genética , Marcação de Genes , Reação em Cadeia da Polimerase , Recombinação Genética
5.
Zool Res ; 42(5): 592-605, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34387415

RESUMO

The large yellow croaker (Larimichthys crocea), which is an economically important mariculture fish in China, is often exposed to environmental hypoxia. Reactive oxygen species (ROS) homeostasis is essential for the maintenance of normal physiological conditions in an organism. Direct evidence that environmental hypoxia leads to ROS overproduction is scarce in marine fish. Furthermore, the sources of ROS overproduction in marine fish under hypoxic stress are poorly known. In this study, we investigated the effects of hypoxia on redox homeostasis in L. crocea and the impact of impaired redox homeostasis on fish. We first confirmed that hypoxia drove ROS production mainly via the mitochondrial electron transport chain and NADPH oxidase complex pathways in L. crocea and its cell line (large yellow croaker fry (LYCF) cells). We subsequently detected a marked increase in the antioxidant systems of the fish. However, imbalance between the pro-oxidation and antioxidation systems ultimately led to excessive ROS and oxidative stress. Cell viability showed a remarkable decrease while oxidative indicators, such as malondialdehyde, protein carbonylation, and 8-hydroxy-2 deoxyguanosine, showed a significant increase after hypoxia, accompanied by tissue damage. N-acetylcysteine (NAC) reduced ROS levels, alleviated oxidative damage, and improved cell viability in vitro. Appropriate uptake of ROS scavengers (e.g., NAC and elamipretide Szeto-Schiller-31) and inhibitors (e.g., apocynin, diphenylene iodonium, and 5-hydroxydecanoate) may be effective at overcoming hypoxic toxicity. Our findings highlight previously unstudied strategies of hypoxic toxicity resistance in marine fish.


Assuntos
Antioxidantes/metabolismo , Peixes/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/química , Oxigênio/metabolismo , Espécies Reativas de Oxigênio , Animais , Linhagem Celular , Sobrevivência Celular , Meio Ambiente , Homeostase , NADP
6.
Zool Res ; 42(6): 746-760, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34636194

RESUMO

Oxygen is an essential molecule for animal respiration, growth, and survival. Unlike in terrestrial environments, contamination and climate change have led to the frequent occurrence of hypoxia in aquatic environments, thus impacting aquatic animal survival. However, the adaptative mechanisms underlying fish responses to environmental hypoxia remain largely unknown. Here, we used large yellow croaker ( Larimichthys crocea) and large yellow croaker fry (LYCF) cells to investigate the roles of the Hif-1α/Hsf1/Hsp70 signaling pathway in the regulation of cellular redox homeostasis, and apoptosis. We confirmed that hypoxia induced the expression of Hif-1α, Hsf1, and Hsp70 in vivo and in vitro. Genetic Hsp70 knockdown/overexpression indicated that Hsp70 was required for maintaining redox homeostasis and resisting oxidative stress in LYCF cells under hypoxic stress. Hsp70 inhibited caspase-dependent intrinsic apoptosis by maintaining normal mitochondrial membrane potential, enhancing Bcl-2 mRNA and protein expression, inhibiting Bax and caspase3 mRNA expression, and suppressing caspase-3 and caspase-9 activation. Hsp70 suppressed caspase-independent intrinsic apoptosis by inhibiting nuclear translocation of apoptosis-inducing factor (AIF) and disturbed extrinsic apoptosis by inactivating caspase-8. Genetic knockdown/overexpression of Hif-1α and dual-luciferase reporter assay indicated that Hif-1α activated the Hsf1 DNA promoter and enhanced Hsf1 mRNA transcription. Hsf1 enhanced Hsp70 mRNA transcription in a similar manner. In summary, the Hif-1α/Hsf1/Hsp70 signaling pathway plays an important role in regulating redox homeostasis and anti-apoptosis in L. crocea under hypoxic stress.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Homeostase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/farmacologia , Perciformes/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Homeostase/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxirredução , Oxigênio/química , Perciformes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água/química
7.
Cell Death Differ ; 28(3): 1110-1125, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33116295

RESUMO

While the capacity to regenerate tissues or limbs is limited in mammals, including humans, axolotls are able to regrow entire limbs and major organs after incurring a wound. The wound blastema has been extensively studied in limb regeneration. However, due to the inadequate characterization of ECM and cell subpopulations involved in the regeneration process, the discovery of the key drivers for human limb regeneration remains unknown. In this study, we applied large-scale single-cell RNA sequencing to classify cells throughout the adult axolotl limb regeneration process, uncovering a novel regeneration-specific mitochondria-related cluster supporting regeneration through energy providing and the ECM secretion (COL2+) cluster contributing to regeneration through cell-cell interactions signals. We also discovered the dedifferentiation and re-differentiation of the COL1+/COL2+ cellular subpopulation and exposed a COL2-mitochondria subcluster supporting the musculoskeletal system regeneration. On the basis of these findings, we reconstructed the dynamic single-cell transcriptome of adult axolotl limb regenerative process, and identified the novel regenerative mitochondria-related musculoskeletal populations, which yielded deeper insights into the crucial interactions between cell clusters within the regenerative microenvironment.


Assuntos
Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiologia , Mitocôndrias/genética , Músculo Esquelético/fisiologia , Regeneração/genética , Amputação Cirúrgica , Animais , Diferenciação Celular , Extremidades/fisiologia , Extremidades/cirurgia , Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Transcriptoma
8.
Cell Death Differ ; 27(8): 2344-2362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32051546

RESUMO

Rab5 is a master regulator for endosome biogenesis and transport while its in vivo physiological function remains elusive. Here, we find that Rab5a is upregulated in several in vivo and in vitro myogenesis models. By generating myogenic Rab5a-deficient mice, we uncover the essential roles of Rab5a in regulating skeletal muscle regeneration. We further reveal that Rab5a promotes myoblast differentiation and directly interacts with insulin receptor substrate 1 (IRS1), an essential scaffold protein for propagating IGF signaling. Rab5a interacts with IRS1 in a GTP-dependent manner and this interaction is enhanced upon IGF-1 activation and myogenic differentiation. We subsequently identify that the arginine 207 and 222 of IRS1 and tyrosine 82, 89, and 90 of Rab5a are the critical amino acid residues for mediating the association. Mechanistically, Rab5a modulates IRS1 activation by coordinating the association between IRS1 and the IGF receptor (IGFR) and regulating the intracellular membrane targeting of IRS1. Both myogenesis-induced and IGF-evoked AKT-mTOR signaling are dependent on Rab5a. Myogenic deletion of Rab5a also reduces the activation of AKT-mTOR signaling during skeletal muscle regeneration. Taken together, our study uncovers the physiological function of Rab5a in regulating muscle regeneration and delineates the novel role of Rab5a as a critical switch controlling AKT-mTOR signaling by activating IRS1.


Assuntos
Diferenciação Celular , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/fisiologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Células HEK293 , Membro Posterior/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/genética , Proteínas rab5 de Ligação ao GTP/genética
9.
Tissue Eng Part B Rev ; 24(6): 443-453, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29724151

RESUMO

Tendon injuries are common musculoskeletal system disorders, but the tendons have poor regeneration ability. To address this issue, tendon tissue engineering provides potential strategies for future therapeutic treatment. Elements of the physical microenvironment, such as the mechanical force and surface topography, play a vital role in regulating stem cell fate, enhancing the differentiation efficiency of seed cells in tendon tissue engineering. Various inducible scaffolds have been widely explored for tendon regeneration, and scaffold-enhancing modifications have been extensively studied. In this review, we systematically summarize the effects of the physical microenvironment on stem cell differentiation and tendon regeneration; we also provide an overview of the inducible scaffolds for stem cell tenogenic differentiation. Finally, we suggest some potential scaffold-based therapies for tendon injuries, presenting an interesting perspective on tendon regenerative medicine.


Assuntos
Diferenciação Celular , Regeneração , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual/métodos , Animais , Humanos , Células-Tronco/fisiologia , Tendões/fisiologia , Alicerces Teciduais
10.
Mol Cell Biol ; 38(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30275345

RESUMO

The regenerative process of injured muscle is dependent on the fusion and differentiation of myoblasts derived from muscle stem cells. Hsp70 is important for maintaining skeletal muscle homeostasis and regeneration, but the precise cellular mechanism remains elusive. In this study, we found that Hsp70 was upregulated during myoblast differentiation. Depletion or inhibition of Hsp70/Hsc70 impaired myoblast differentiation. Importantly, overexpression of p38 mitogen-activated protein kinase α (p38MAPKα) but not AKT1 rescued the impairment of myogenic differentiation in Hsp70- or Hsc70-depleted myoblasts. Moreover, Hsp70 interacted with MK2, a substrate of p38MAPK, to regulate the stability of p38MAPK. Knockdown of Hsp70 also led to downregulation of both MK2 and p38MAPK in intact muscles and during cardiotoxin-induced muscle regeneration. Hsp70 bound MK2 to regulate MK2-p38MAPK interaction in myoblasts. We subsequently identified the essential regions required for Hsp70-MK2 interaction. Functional analyses showed that MK2 is essential for both myoblast differentiation and skeletal muscle regeneration. Taken together, our findings reveal a novel role of Hsp70 in regulating myoblast differentiation by interacting with MK2 to stabilize p38MAPK.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Regulação para Cima/fisiologia
11.
Br J Pharmacol ; 175(6): 859-876, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29130485

RESUMO

BACKGROUND AND PURPOSE: Aseptic prosthesis loosening, caused by wear particles, is one of the most common causes of arthroplasty failure. Extensive and over-activated osteoclast formation and physiological functioning are regarded as the mechanism of prosthesis loosening. Therapeutic modalities based on inhibiting osteoclast formation and bone resorption have been confirmed to be an effective way of preventing aseptic prosthesis loosening. In this study, we have investigated the effects of sophocarpine (SPC, derived from Sophora flavescens) on preventing implant loosening and further explored the underlying mechanisms. EXPERIMENTAL APPROACH: The effects of SPC in inhibiting osteoclastogenesis and bone resorption were evaluated in osteoclast formation, induced in vitro by the receptor activator of NF-κB ligand (RANKL). A rat femoral particle-induced peri-implant osteolysis model was established. Subsequently, micro-CT, histology, mechanical testing and bone turnover were used to assess the effects of SPC in preventing implant loosening. KEY RESULTS: In vitro, we found that SPC suppressed osteoclast formation, bone resorption, F-actin ring formation and osteoclast-associated gene expression by inhibiting NF-κB signalling, specifically by targeting IκB kinases. Our in vivo study showed that SPC prevented particle-induced prosthesis loosening by inhibiting osteoclast formation, resulting in reduced periprosthetic bone loss, diminished pseudomembrane formation, improved bone-implant contact, reduced bone resorption-related turnover and enhanced stability of implants. Inhibition of NF-κB signalling by SPC was confirmed in vivo. CONCLUSION AND IMPLICATIONS: SPC can prevent implant loosening through inhibiting osteoclast formation and bone resorption. Thus, SPC might be a novel therapeutic agent to prevent prosthesis loosening and for osteolytic diseases.


Assuntos
Alcaloides/farmacologia , Reabsorção Óssea/prevenção & controle , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alcaloides/isolamento & purificação , Animais , Modelos Animais de Doenças , Masculino , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteólise/prevenção & controle , Falha de Prótese , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sophora/química
12.
Front Pharmacol ; 9: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636680

RESUMO

Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata) exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist) and/or SC79 (an AKT agonist) in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

13.
Zhonghua Zhong Liu Za Zhi ; 29(9): 670-5, 2007 Sep.
Artigo em Zh | MEDLINE | ID: mdl-18246796

RESUMO

OBJECTIVE: To study the inhibitory effect of small interference RNA (siRNA) targeting cyclin A2 gene on the growth of osteosarcoma MG-63 and human normal skin fibroblast HSF cells and to explore whether cyclin A2 siRNAs could become a useful tool in the treatment of osteosarcoma. METHODS: Three pairs of siRNAs targeting cyclin A2 mRNA and a pair of nonsense siRNA were designed according to the current criteria. SiRNAs were chemically synthesized and purified. The siRNAs were transfected into MG-63 cells and HSF cells via oligofectamine. The cells transfected with nonsense siRNA served as negative control group and those only treated with PBS as blank control group. Quantitative fluorescence RT-PCR, Western-blot, MTT assay, reverse transcriptase (RT)-PCR, flow cytometry and clone forming test were employed to evaluate the efficacy of RNA interference. At the same time, the mRNA expression of PCNA and cyclin B1 in siRNA-treated MG-63 cells were examined. RESULTS: Although all three siRNAs could reduce the cyclin A2 expression, siRNA, appeared to be the most effective. After 48 h treatment with siRNA1, cyclin A2 mRNA and protein expression in MG-63 cells was significantly reduced by nearly 80% as compared with that of the blank control group, whereas the negative and blank control groups had similar expression levels. MG-63 cells treated with siRNA1 were arrested at G0/G1 phase by 80.1% and the proliferation of these tumor cells was suppressed 48 h after transfection. Furthermore, MG-63 cells showed a decreased colony forming ability after siRNA1 treatment. In addition, the cyclin A2-depleted MG-63 cells showed decreased levels of PCNA and cyclin B1. In contrast, although cyclin A2 expression in HSF reduced by nearly 60% after treatment by siRNA1 for 48h, these cells exhibited only a slight change in cell cycling, and neither clear inhibition of proliferation nor impaired colony forming ability was observed. CONCLUSION: Cyclin A2 is critical for proliferation of MG-63 cells. Cyclin A2-siRNAs can induce obvious inhibition of cyclin A2 mRNA and protein expression in MG-63 and HSF cells, which consequently down-regulate the proliferation of MG-63 cells. There is little effect on the proliferation of siRNA-treated HSF cells. Those results indicate that siRNAs against cyclin A2 may become a potential antiproliferative tool in future antitumor therapy.


Assuntos
Neoplasias Ósseas/patologia , Proliferação de Células , Ciclina A2/metabolismo , Osteossarcoma/patologia , RNA Interferente Pequeno , Neoplasias Ósseas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Ciclina A2/genética , Ciclina B1/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Osteossarcoma/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Mensageiro , Pele/citologia , Transfecção
14.
Zhonghua Yi Xue Za Zhi ; 87(9): 627-33, 2007 Mar 06.
Artigo em Zh | MEDLINE | ID: mdl-17550735

RESUMO

OBJECTIVE: To study the impact of small interference RNA (siRNA) targeting cyclin A2 gene on the growth of MG-63 and HSF cells and to explore whether cyclin A2 siRNAs could become a useful tool in the treatment of osteosarcoma. METHODS: One pair of siRNA targeting the cyclin A2 mRNA and a pair of nonsense siRNA were designed according the current criteria. SiRNA was chemically synthesized and purified. The siRNA was transfected into osteosarcoma cell line MG-63 and normal human skin fibroblast (HSF) cells via oligofectamine. Cells transfected with nonsense siRNA served as the negative control and those only treated with PBS as the blank control group. Quantitative fluorescence RT-PCR, Western-blot, MTT assay, reverse transcriptase (RT)-PCR, flow cytometry and colony-forming test were employed to evaluate the efficacy of RNA interference. At the same time, the mRNA expression of PCNA and cyclin B1 in siRNA treated MG-63 cells were examined. RESULTS: 1 nmol/L, 10 nmol/L, 50 nmol/L and 100 nmol/L cyclin A2-siRNA can reduced cyclin A2 mRNA and protein expression respectively by 9.43%, 56.35%, 79.17% and 84.30% as compared with that of the blank control group, whereas the negative and blank control groups had similar expression levels. After 48 h treatment with 10 nmol/L siRNA, MG-63 cells were arrested in G0/G1 phase and the proliferation of this tumor cell was suppressed by 39.06% 48 h after transfection. Furthermore, the treated MG-63 cells showed less colony-forming ability. Increasing the siRNA concentration to 50 nmol/L can further inhibit the proliferation of MG-63 cells by 54.94%. In addition, the cyclin A2-depleted MG-63 cells showed decreased levels of PCNA and cyclin B1. In contrast, although cyclin A2 mRNA and protein expression in HSF reduced 58.13% 48 h after treatment by 50 nmol/L siRNA, these cells exhibited only a slight change in cell cycle, and no clear inhibition of proliferation and impaired plate colony-forming ability was observed. CONCLUSION: Cyclin A2 gene maybe served as a potential target for tumor therapy. RNA interference induces obvious inhibition of cyclin A2 mRNA and protein expression in MG-63 and HSF cells, which consequently downregulate the proliferation of MG-63 cells. There is few inhibitory effect on the proliferation by siRNAs for HSF cells. These results indicate that siRNAs against cyclin A2 could become a potential antiproliferative tool in future antitumor therapy.


Assuntos
Proliferação de Células , Ciclina A/genética , RNA Interferente Pequeno/genética , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Ciclina A/metabolismo , Ciclina A2 , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Citometria de Fluxo , Fase G1/genética , Fase G1/fisiologia , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
15.
Chemosphere ; 169: 418-427, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27889508

RESUMO

Organisms at all levels of evolutionary complexity react to hypoxic stress. To clarify the effects of acute hypoxia on physiological and biochemical responses of Larimichthys crocea, we measured the activity levels of the antioxidant enzymes superoxide dismutase and catalase, hemoglobin concentration, functional indices of the liver (aspartate transaminase, alanine transaminase), heart (phosphocreatine kinase), and immune system (alkaline phosphatase), as well as mRNA expression levels of the immunity-related genes Hsp70 and HIF-1α at different time points of hypoxic. In addition, liver, gill, and kidney samples were histologically analyzed. We found that hemoglobin concentration and all enzyme activities increased during hypoxia, although these effects were transient and most indices returned to basal levels thereafter. The extent of the increase in the parameter values was inversely proportional to the dissolved oxygen content. Hsp70 and HIF-1α mRNA expression levels increased significantly in the blood, liver, gills, and kidneys following exposure to hypoxia, which may play an important role in protecting fish against oxidative damage. However, we found histological evidence of hypoxia-induced injuries to the gills, liver, and kidneys, which are involved in breathing, detoxification, and osmotic balance maintenance, respectively. Thus, despite the upregulation of defensive mechanisms, acute hypoxia still caused irreversible damage of organs. In conclusion, we observed that, in response to acute hypoxic stress, L. crocea enhances immune defensive function and antioxidant capacity. A better understanding of the regulation of the molecular anti-hypoxia mechanisms can help speeding up the selective breeding of hypoxia-tolerant L. crocea.


Assuntos
Catalase/metabolismo , Brânquias/lesões , Hipóxia/patologia , Rim/lesões , Fígado/lesões , Perciformes/metabolismo , Superóxido Dismutase/metabolismo , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Creatina Quinase Forma MB/sangue , Expressão Gênica , Regulação da Expressão Gênica , Brânquias/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rim/metabolismo , Fígado/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/sangue
16.
Chemosphere ; 184: 907-915, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28651317

RESUMO

Land-based recirculating aquaculture systems (RAS) and cage culture are important methods of Larimichthys crocea production. The effects of environmental factors on physiological and biochemical aspects of L. crocea require clarification. Temperature and salinity are controlled in RAS and directly affect L. crocea growth and survival. To explore optimal parameters, the oxygen consumption rate (RO), ammonium excretion rate (RN), and O/N ratio at different temperatures (8, 14, 20, 26, and 32 °C) and salinities (5, 15, 25, and 35‰) were determined. RO, RN, and O/N first increased and then decreased with elevated temperature and salinity, peaking at 26 °C and 25‰, respectively. This suggests that the metabolism of L. crocea was maximal at 26 °C and 25‰ salinity, which promote its growth and survival. Additionally, hypoxia affects cage culture, and has significant effects on enzymatic activities and stress-inducible gene expression. To accelerate the selective breeding of hypoxia-tolerant L. crocea in cage culture, we measured adenosine triphosphatase (ATPase), lactate dehydrogenase (LDH), and succinate dehydrogenase (SDH) activities, and hypoxia-inducing factor 1 (HIF-1) mRNA expression in the myocardium under hypoxia (2.5, 3.5, and 4.5 mg L-1). ATPase and SDH activities first decreased and then increased under hypoxia, whereas LDH activity and HIF-1α expression first increased and then decreased. Thus, under hypoxia, the myocardial mitochondria switched from being susceptible to being resistant to injury induced by energy metabolism, and respiration in L. crocea likely converted from aerobic to anaerobic during adaptation. Furthermore, the upregulation of HIF-1α mRNA suggests it has an active role in protection against anoxic damage.


Assuntos
Adaptação Fisiológica , Perciformes/fisiologia , Aclimatação , Animais , Metabolismo Energético , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Perciformes/metabolismo , RNA Mensageiro/metabolismo , Salinidade , Estresse Fisiológico
17.
PLoS One ; 12(5): e0178781, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562696

RESUMO

Steroid-associated osteonecrosis (SAON) might induce bone collapse and subsequently lead to joint arthroplasty. Core decompression (CD) is regarded as an effective therapy for early-stage SAON, but the prognosis is unsatisfactory due to incomplete bone repair. Parathyroid hormone[1-34] (PTH[1-34]) has demonstrated positive efficacy in promoting bone formation. We therefore evaluated the effects of PTH on improving the effects of CD in Early-Stage SAON. Distal femoral CD was performed two weeks after osteonecrosis induction or vehicle injection, with ten of the ON-induced rabbits being subjected to six-week PTH[1-34] treatment and the others, including ON-induced and non-induced rabbits, being treated with vehicle. MRI confirmed that intermittent PTH administration improved SAON after CD therapy. Micro-CT showed increased bone formation within the tunnel. Bone repair was enhanced with decreased empty osteocyte lacunae and necrosis foci area, resulting in enhanced peak load and stiffness of the tunnel. Additionally, PTH enlarged the mean diameter of vessels in the marrow and increased the number of vessels within the tunnels, as well as elevated the expression of BMP-2, RUNX2, IGF-1, bFGF and VEGF, together with serum OCN and VEGF levels. Therefore, PTH[1-34] enhances the efficacy of CD on osteogenesis and neovascularization, thus promoting bone and blood vessels repair in the SAON model.


Assuntos
Corticosteroides/efeitos adversos , Descompressão Cirúrgica , Modelos Animais de Doenças , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese , Osteonecrose/tratamento farmacológico , Hormônio Paratireóideo/farmacologia , Animais , Masculino , Osteonecrose/induzido quimicamente , Osteonecrose/fisiopatologia , Coelhos
18.
Sci Adv ; 2(11): e1600874, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28138519

RESUMO

The repair of injured tendons remains a formidable clinical challenge because of our limited understanding of tendon stem cells and the regulation of tenogenesis. With single-cell analysis to characterize the gene expression profiles of individual cells isolated from tendon tissue, a subpopulation of nestin+ tendon stem/progenitor cells (TSPCs) was identified within the tendon cell population. Using Gene Expression Omnibus datasets and immunofluorescence assays, we found that nestin expression was activated at specific stages of tendon development. Moreover, isolated nestin+ TSPCs exhibited superior tenogenic capacity compared to nestin- TSPCs. Knockdown of nestin expression in TSPCs suppressed their clonogenic capacity and reduced their tenogenic potential significantly both in vitro and in vivo. Hence, these findings provide new insights into the identification of subpopulations of TSPCs and illustrate the crucial roles of nestin in TSPC fate decisions and phenotype maintenance, which may assist in future therapeutic strategies to treat tendon disease.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica/fisiologia , Nestina/metabolismo , Células-Tronco/metabolismo , Tendões/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Nestina/genética , Células-Tronco/citologia , Tendões/citologia
19.
Biomaterials ; 53: 239-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890723

RESUMO

Elucidating the regulatory mechanisms of osteogenesis of human mesenchymal stem cell (hMSC) is important for the development of cell therapies for bone loss and regeneration. Here we showed that hsa-miR-199a-5p modulated osteogenic differentiation of hMSCs at both early and late stages through HIF1a pathway. hsa-miR-199a expression was up-regulated during osteogenesis for both of two mature forms, miR-199a-5p and -3p. Over-expression of miR-199a-5p but not -3p enhanced differentiation of hMSCs in vitro, whereas inhibition of miR-199a-5p reduced the expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and mineralization. Furthermore, over-expression of miR-199a enhanced ectopic bone formation in vivo. Chitosan nanoparticles were used for delivery of stable modified hsa-miR-199a-5p (agomir) both in vitro and in vivo, as a proof-of-concept for stable agomir delivery on bone regeneration. The hsa-mir199a-5p agomir were mixed with Chitosan nanoparticles to form nanoparticle/hsa-mir199a-5p agomir plasmid (nanoparticle/agomir) complexes, and nanoparticle/agomir complexes could improve the in vivo regeneration of bone. Further mechanism studies revealed that hypoxia enhanced osteogenesis at early stage and inhibited osteogenesis maturation at late stage through HIF1a-Twist1 pathway. At early stage of differentiation, hypoxia induced HIF1a-Twist1 pathway to enhance osteogenesis by up-regulating miR-199a-5p, while at late stage of differentiation, miR-199a-5p enhanced osteogenesis maturation by inhibiting HIF1α-Twist1 pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/administração & dosagem , Nanopartículas , Osteogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/farmacologia , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína 1 Relacionada a Twist/metabolismo
20.
Biomaterials ; 44: 173-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617136

RESUMO

Physical topographic cues from various substrata have been shown to exert profound effects on the growth and differentiation of stem cells due to their niche-mimicking features. However, the biological function of different topographic materials utilized as bio-scaffolds in vivo have not been rigorously characterized. This study investigated the divergent differentiation pathways of mesenchymal stem cells (MSCs) and neo-tissue formation trigged by aligned and randomly-oriented fibrous scaffolds, both in vitro and in vivo. The aligned group was observed to form more mature tendon-like tissue in the Achilles tendon injury model, as evidenced by histological scoring and collagen I immunohistochemical staining data. In contrast, the randomly-oriented group exhibited much chondrogenesis and subsequent bone tissue formation through ossification. Additionally, X-ray imaging and osteocalcin immunohistochemical staining also demonstrated that osteogenesis in vivo is driven by randomly oriented topography. Furthermore, MSCs on the aligned substrate exhibited tenocyte-like morphology and enhanced tenogenic differentiation compared to cells grown on randomly-oriented scaffold. qRT-PCR analysis of osteogenic marker genes and alkaline phosphatase (ALP) staining demonstrated that MSCs cultured on randomly-oriented fiber scaffolds displayed enhanced osteogenic differentiation compared with cells cultured on aligned fiber scaffolds. Finally, it was demonstrated that cytoskeletal tension release abrogated the divergent differentiation pathways on different substrate topography. Collectively, these findings illustrate the relationship between topographic cues of the scaffold and their inductive role in tissue regeneration; thus providing an insight into future development of smart functionalized bio-scaffold design and its application in tissue engineering.


Assuntos
Diferenciação Celular , Linhagem da Célula , Regeneração/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Linhagem Celular , Células Cultivadas , Citoesqueleto/metabolismo , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Ácido Láctico/química , Células-Tronco Mesenquimais , Camundongos , Nanofibras/química , Nanofibras/ultraestrutura , Osteogênese , Poliésteres , Polímeros/química , Radiografia , Ratos , Coloração e Rotulagem , Cicatrização , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA