RESUMO
There is an urgent need for an oral, efficient and safe regimen for high-risk APL under the pandemic of COVID-19. We retrospectively analysed 60 high-risk APL patients. For induction therapy (IT), in addition to all-trans retinoic acid (ATRA) and oral arsenic (RIF), 22 patients received oral etoposide (VP16) as cytotoxic chemotherapy (CC), and 38 patients received intravenous CC as historical control group. The median dose of oral VP16 was 1000 mg [interquartile rage (IQR), 650-1250]. One patient died during IT in the control group, 59 evaluable patients (100%) achieved complete haematological remission (CHR) after IT and complete molecular remission (CMR) after consolidation therapy. The median time to CHR and CMR was 36 days (33.8-44) versus 35 days (32-42; p = 0.75) and 3 months (0.8-3.5) versus 3.3 months (2.4-3.7; p = 0.58) in the oral VP16 group and in the control group. Two (9.1%) and 3 (7.9%) patients experienced molecular relapse in different group respectively. The 2-year estimated overall survival and event-free survival were 100% versus 94.7% (p = 0.37) and 90.9% versus 89.5% (p = 0.97) respectively. A completely oral, efficient and safe induction regimen including oral VP16 as cytoreductive chemotherapy combined with ATRA and RIF is more convenient to administer for patients with high-risk APL.
Assuntos
Etoposídeo , Quimioterapia de Indução , Leucemia Promielocítica Aguda , Humanos , Etoposídeo/administração & dosagem , Etoposídeo/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Administração Oral , Estudos Retrospectivos , Quimioterapia de Indução/métodos , Infusões Intravenosas , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/mortalidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , COVID-19 , Tretinoína/administração & dosagem , Tretinoína/uso terapêutico , SARS-CoV-2 , Indução de Remissão , Arsênio/administração & dosagem , IdosoRESUMO
How to effectively improve energy transfer efficiency and luminous intensity inspired us to synthesize a series of SiO2:x%Tb3+@Gd2O3:y%Eu3+ samples, study their luminescence properties and interfacial energy transfer (IET), and compare with SiO2:x%Eu3+@Gd2O3:y%Tb3+. The results show that SiO2:x%Tb3+@Gd2O3:y%Eu3+ can exhibit adjustable multicolor luminescence from red to green at different concentrations of Eu3+ and Tb3+ or under different excitation wavelengths, and there exists efficient IET from Tb3+ to Eu3+ in SiO2:x%Tb3+@Gd2O3:y%Eu3+ and SiO2:x%Eu3+@Gd2O3:y%Tb3+, which improves the energy transfer efficiency and luminous intensity. In addition, the luminescence properties are different between SiO2:3%Tb3+@Gd2O3:3%Eu3+ and SiO2:3%Eu3+@Gd2O3:3%Tb3+, and the energy transfer efficiency of Tb3+ â Eu3+ in SiO2:3%Tb3+@Gd2O3:3%Eu3+ is obviously higher than that in SiO2:3%Eu3+@Gd2O3:3%Tb3+. The present study not only developed a kind of multicolor luminescent phosphor but also offered an important new strategy for improving the energy transfer efficiency and luminescent intensity.
RESUMO
PURPOSE: To assess the relationship between dislocation and functional outcomes in supination-external rotation (SER) ankle fractures. METHODS: A retrospective case series study was performed on patients with ankle fractures treated surgically at a large trauma center from January 2015 to December 2021. The inclusion criteria were young and middle-aged patients of 18-65 years with SER ankle fractures that can be classified by Lauge-Hansen classification and underwent surgery at our trauma center. Exclusion criteria were serious life-threatening diseases, open fractures, fractures delayed for more than 3 weeks, fracture sites ≥2, etc. Then patients were divided into dislocation and no-dislocation groups. Patient demographics, injury characteristics, surgery-related outcomes, and postoperative functional outcomes were collected and analyzed. The functional outcomes of SER ankle fractures were assessed postoperatively at 1-year face-to-face follow-up using the foot and ankle outcome score (FAOS) and American orthopedic foot and ankle society score and by 2 experienced orthopedic physicians. Relevant data were analyzed using SPSS version 22.0 by Chi-square or t-test. RESULTS: During the study period, there were 371 ankle fractures. Among them, 190 (51.2%) were SER patterns with 69 (36.3%) combined with dislocations. Compared with the no-dislocation group, the dislocation group showed no statistically significant differences in gender, age composition, fracture type, preoperative complications with diabetes, smoking history, preoperative waiting time, operation time, and length of hospital stay (all p > 0.05), but a significantly higher Lauge-Hansen injury grade (p < 0.001) and syndesmotic screw fixation rate (p = 0.033). Moreover, the functional recovery was poorer, revealing a significantly lower FAOS in the sport/rec scale (p < 0.001). Subgroup analysis showed that among SER IV ankle fracture patients, FAOS was much lower in pain (p = 0.042) and sport/rec scales (p < 0.001) for those with dislocations. American orthopedic foot and ankle society score revealed no significant difference between dislocation and no-dislocation patients. CONCLUSION: Dislocation in SER ankle fractures suggests more severe injury and negatively affects functional recovery, mainly manifested as more pain and poorer motor function, especially in SER IV ankle cases.
RESUMO
The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.
RESUMO
Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.
Assuntos
Via de Sinalização Hippo , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Fosfopeptídeos , Transdução de Sinais/fisiologia , Movimento Celular , Fosfoproteínas/metabolismoRESUMO
Both cis- and trans- tetracyclic spiroindolines are the core of many important biologically active indole alkaloids, but the divergent synthesis of these important motifs is largely hampered by the limited stereoselectivity control. A facile stereoinversion protocol is reported here in Michael addition-initiated tandem Mannich cyclizations for constructing tetracyclic spiroindolines, providing an easy access to two diastereoisomeric cores of monoterpene indole alkaloids with high selectivity. The mechanistic studies including in situ NMR experiments, control experiments, and DFT calculations reveal that the reaction undergoes a unique retro-Mannich/re-Mannich rearrangement including a C-C bond cleavage that is very rare for a saturated six-membered carbocycle. Insights into the stereoinversion process have been uncovered, and the major effects were determined to be the electronic properties of N-protecting groups of the indole with the aid of Lewis acid catalysts. By understanding these insights, the stereoselectivity switching strategy is also smoothly applied from enamine substrates to vinyl ether substrates, which are enriched greatly for the divergent synthesis and stereocontrol of monoterpene indole alkaloids. The current reaction also proves to be very practical and was successfully applied to the gram-scale total synthesis of strychnine and deethylibophyllidine in short routes.
RESUMO
Heavy metals in soils can migrate into the food chain and affect human health. In particular, they can be released into water supplies through interactions between soils and water. It is therefore important to study the concentrations of heavy metals in soils surrounding sources of drinking water, but there is a lack of research in this area. A total of 7656 topsoil samples surrounding the core water source of Danjiangkou Reservoir in China were collected and analyzed for As, Hg and Pb. Moran's I index and semivariograms were used to analyze the spatial correlation and variation of these heavy metals. The potential ecological risk index was used to evaluate heavy metal pollution. Fifteen natural and human factors were selected to explore the sources of heavy metal pollution using the GeoDetector model. The positive matrix factorization (PMF) model verified the reasonableness of the main factors identified by the GeoDetector model and further quantified two main sources of soil heavy metals. As, Hg and Pb were enriched to varying degrees in the soils. The potential ecological risk of Hg in soils was the most serious, with 24.67% of the area at high or very high risk. As and Pb both had a low potential ecological risk. The results of GeoDetector model and PMF model showed that the contributions of factor 1 (fertilizer application and automobile exhaust emissions) and factor 2(industrial waste) of soil heavy metal pollution were 49.8% and 50.2%, respectively. At last, the zoning control strategies were proposed in order to provide scientific reference for the management of soil heavy metal pollution.
Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Solo , Chumbo , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Resíduos Industriais , ChinaRESUMO
The upconversion (UC) emission intensity of Ln3+-doped CaF2 nanomaterials is not ideal, which limits their application in some advanced scientific fields. Hence, it is extremely imperative to enhance the emission intensity of UC nanocrystals. In this work, an ionic-liquid-assisted hydrothermal method based on an ethylene glycol (EG) and ionic liquid (IL) two-phase system was used to synthesize CaF2 doped with Yb3+ and Ho3+. The influence of the amount of IL and the reaction time as well as the concentration of Gd3+ doping on morphology and size was studied in detail, and the growth mechanism was proposed. Green UC luminescence materials were obtained through co-doping Yb3+ and Ho3+ ions. Furthermore, the luminescence of UC was increased monotonically with the introduction of Gd3+ ions. The effect mechanism of Gd3+ doping on the UC luminescence was put forward, which might provide a new method for the promotion of UC luminescence. In addition, the temperature sensing of CaF2: Yb3+/Ho3+/Gd3+ was investigated, which demonstrated that the phosphor has a potential application prospect in thermal sensing. Meanwhile, CaF2: Yb3+/Ho3+/Gd3+ also exhibited a paramagnetic property at room temperature. Therefore, these multifunctional nanocrystals may have prospective applications in optical bioimaging, magnetic resonance imaging, and temperature sensing.
Assuntos
Líquidos Iônicos , Nanopartículas , Cristalização , Etilenoglicóis , Luminescência , Nanopartículas/química , TemperaturaRESUMO
In this work, GdOF:RE3+ (RE = Eu, Yb, and Er) phosphors with high thermally stable luminescence were reported, which were synthesized by an ionic liquid-assisted two-phase system and subsequent calcination technique for the first time. Nanodisks, nanorod aggregates, nanoneedles, and stubby nanorods were obtained by simply regulating the pH value. The luminescent properties of precursors and products were discussed in detail. By carefully adjusting the calcination temperature and the pH value of the initial system, pure red emission was achieved in both GdOF:Eu3+ and GdOF:Yb3+, Er3+ phosphors. The reason for distinct luminescent properties of different products was discussed from various perspectives. Moreover, the temperature-dependent spectra were measured and the GdOF:Eu3+ and GdOF:Yb3+, Er3+ products both exhibited outstanding thermal stability. In addition, the as-prepared nanomaterials presented paramagnetic properties, indicating their potential application in both field-emission displays and magnetic resonance imaging technology.
RESUMO
Supination external rotation (SER) type ankle fracture is the most common ankle fracture in the Lauge-Hansen classification and is often accompanied with syndesmotic injury. However, the mechanism of this injury is indistinct and a suggestive role can be given by preoperative imaging. This study was to preoperatively predict whether SER type ankle fractures are accompanied with syndesmotic injuries by the means of lateral malleolus fracture mapping. One hundred and forty-eight patients diagnosed with SER type ankle fractures were retrospectively enrolled in this study. The baseline data were collected and computed tomography data were reconstructed in 3-dimensional (3D) model. Patients were divided into stable and unstable groups according to intraoperative Cotton test and whether the inferior tibiofibular screw was placed. All fracture lines were superimposed on the ankle template to create a fracture map, and the data on the fracture map were further measured. Logistic regression was conducted to identify relevant factors and the cutoff values were given using receiver operating characteristic curves. Forty-one patients were enrolled in the unstable group and 107 patients were enrolled in the stable group. The lateral malleolus fracture lines of the unstable group were higher and steeper than that in the stable group on lateral and posterior views. The fracture height of the posterior cortex and peak height were the significant contributing factors, and the cut-off values of posterior cortex, peak height and inclination angle were 40.35 mm (sensitivity: 78%, specificity: 82%), 55.34 mm (sensitivity: 85%, specificity: 70%) and 55.6° (sensitivity: 66%, specificity: 86%), respectively. In general, when the fracture lines of the lateral malleolus were high and steep, it was usually indicative of a syndesmotic injury and can be predicted by the preoperative 3D reconstruction of fracture height of posterior cortex, peak height and inclination angle. If the cut-off values of these indicators are exceeded, the syndesmotic injuries may be presented and need to be verified in the intraoperative Cotton test to decide whether to insert an inferior tibiofibular screw.
RESUMO
OBJECTIVE: To design a sitting walking aid with intelligent shock absorption, high safety, alarm and heart rate monitoring device. METHODS: Aluminum alloy bracket is used as the main body of the walker. U-shaped soft arm bracket and L-shaped handle are arranged at the top, and universal wheel and anti-slip floor mat are arranged at the bottom. The shock-absorbing seat is connected to the geared motor through a hydraulic rod, and the seat is equipped with GPS, alarm device and heart rate monitoring device, and the finite element software Abaqus 2021 is used to analyze the force of the shock absorbing seat. RESULTS: The main body of the walker is light and easy to carry, with strong bearing capacity. The U-shaped soft arm rest and L-shaped handle can increase the sense of user experience. The combination of universal wheel and anti-slip floor mat can make the user safe and labor-saving. When the user wants to sit down and rest, the switch can be adjusted to drive the shock absorbing seat to turn over and support the elderly to sit down slowly through the deceleration motor, so as to realize the safe and independent rest, and the shock absorbing seat can withstand the corresponding stress. CONCLUSIONS: The intelligent shock-absorbing sitting and standing walker saves manpower, is safe and reliable, and meets market demand and user needs.
Assuntos
Fenômenos Mecânicos , Postura Sentada , Humanos , Idoso , Posição OrtostáticaRESUMO
Despite the high cure probability for acute promyelocytic leukaemia (APL), a minority of patients will relapse and the risk factors for relapse are unclear. We retrospectively analysed 212 patients who were diagnosed with non-high-risk APL and received all-trans retinoic acid (ATRA) plus arsenic as front-line therapy at Peking University Institute of Hematology from February 2014 to December 2018. A total of 176 patients (83%) received oral arsenic (realgar-indigo naturalis formula) plus ATRA, 36 patients (17%) received arsenic trioxide plus ATRA and 203 patients were evaluable for relapse. After a median (range) follow-up of 53·6 (24·3-85·4) months, two patients had molecular relapse and eight had haematological relapse. A promyelocytic leukaemia/retinoic acid receptor alpha (PML-RARA) transcript level of ≥6·5% at the end of induction therapy was associated with relapse (P = 0·031). The 5-year cumulative incidence of relapse, event-free survival and overall survival were 5·5%, 92·3% and 96·3% respectively. In conclusion, the present long-term follow-up study further confirmed the high cure probability of ATRA plus oral arsenic as front-line therapy for non-high-risk APL and showed that the PML-RARA transcript level at the end of induction therapy was associated with relapse.
Assuntos
Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Tretinoína/uso terapêutico , Adolescente , Adulto , Idoso , Feminino , Humanos , Quimioterapia de Indução , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto JovemRESUMO
Color-tunable phosphors can be obtained through codoping strategies and energy transfer regulation. Ce3+ and Eu2+ are the most common and effective activator ions used in phosphor materials. However, the energy transfer from Eu2+ to Ce3+ is rarely reported. In this work, Y2Mg2Al2Si2O12(YMAS):Eu2+,Ce3+ phosphors were successfully synthesized, which was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Rietveld refinement, scanning electron microscopy (SEM) and element mapping images, and spectral information. The luminescent color of YMAS:Eu2+,Ce3+ phosphors could be tuned from blue to cyan to light green to yellow-green and finally to green-yellow, which was achieved by adjusting the energy transfer between different dopants. The energy transfer from Eu2+ to Ce3+ was confirmed by photoluminescence spectra and fluorescence decay curves. Within the experimental gradient, the energy transfer efficiency could reach up to 48%. At 373 K, the Y1.99Mg1.99Al2Si2O12:0.01Eu2+,0.01Ce3+ (YMAS:0.01Eu2+,0.01Ce3+) phosphor exhibited a total integral emission loss of only 8%, and the emission peak intensity decreased to 95%, indicating the excellent thermal stability. The white light-emitting diode (WLED) fabricated by the YMAS:0.01Eu2+,0.01Ce3+ phosphor has the same level correlated color temperature (CCT = 5841 K), greatly improved color rendering index (Ra = 87.8), and higher quality white light color (CIE = (0.3258, 0.3214)) than the WLED made by the YMAS:0.01Eu2+ phosphor, indicating that the performance of the phosphor was significantly improved by introducing Ce3+. This work provides an effective guide for the design and development of highly efficient color-tunable phosphors involving energy transfer from Eu2+ to Ce3+ in some specific materials, such as garnet structures.
RESUMO
Uniform and well-dispersed SiO2:x%Tb3+@Lu2O3:y%Eu3+ core-shell spherical phosphors were synthesized via a solvothermal method followed by a subsequent calcination process. The structure, phase composition, and morphology of the samples were studied by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that the Lu2O3:Eu3+ layer was evenly coated on the surface of SiO2:Tb3+ spheres and the shell thickness was about 45-65 nm. The PL spectra and fluorescence lifetimes of the samples were further studied. It was proved that the multicolor luminescence of the samples could be realized by changing the doping concentration ratio of Eu3+ or by changing the excitation wavelengths. Compared with SiO2@Lu2O3:3%Tb3+,6%Eu3+, SiO2:3%Tb3+@Lu2O3:6%Eu3+ showed stronger luminescence intensity, longer fluorescence lifetime, and higher energy transfer efficiency, which was attributed to the effective interfacial energy transfer, and the interfacial energy transfer mechanism from Tb3+ to Eu3+ was a dipole-dipole interaction mechanism. The XPS results indicated that the sample contained a high content of Si-O-Lu bonds, which proved that there was a strong interaction between the SiO2 core and the Lu2O3 shell, making the interfacial energy transfer possible. These results provided a new idea for luminescence enhancement and multicolor luminescence.
RESUMO
Isoliquiritigenin (ISO) is a flavonoid extracted from the root of licorice, which serves various biological and pharmacological functions including antiinflammatory, antioxidation, liver protection, and heart protection. However, the mechanism of its action remains elusive and the direct target proteins of ISO have not been identified so far. Through cell-based screening, we identified ISO as a potent lipid-lowering compound. ISO treatment successfully ameliorated fatty acid-induced cellular lipid accumulation and improved nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) by increasing PPARα-dependent lipid oxidation and decreasing SREBPs-dependent lipid synthesis. Both these signaling required the activation of SIRT1. Knockdown of SIRT1 resulted in the reversal of ISO beneficiary effects suggesting that the lipid-lowering activity of ISO was regulated by SIRT1 expression. To identify the direct target of ISO, limited proteolysis combined with mass spectrometry (LiP-SMap) strategy was applied and IQGAP2 was identified as the direct target for ISO in regulating lipid homeostasis. In the presence of ISO, both mRNA and protein levels of SIRT1 were increased; however, this effect was abolished by blocking IQGAP2 expression using siRNA. To explore how IQGAP2 regulated the expression level of SIRT1, proteome profiler human phospho-kinase array kit was used to reveal possible phosphorylated kinases and signaling nodes that ISO affected. We found that through phosphorylation of CREB, ISO transduced signals from IQGAP2 to upregulate SIRT1 expression. Thus, we not only demonstrated the molecular basis of ISO in regulating lipid metabolism but also exhibited for the first time a novel IQGAP2-CREB-SIRT1 axis in treating NAFLD/NASH.
Assuntos
Chalconas , Hepatopatia Gordurosa não Alcoólica , Animais , Chalconas/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismoRESUMO
Donor selection for older leukaemia patients undergoing haematopoietic cell transplant (HCT) is not well defined: outcomes might be improved with a younger offspring donor rather than an older human leukocyte antigen (HLA)-matched sibling donor (MSD). We extended our multicentre dataset. A total of 185 acute leukaemia patients (≥ 50 years) transplanted in first complete remission who received HCT from offspring (n = 62) or MSD (n = 123) were included. A 1:1 ratio matched-pair analysis was performed. We were able to match 54 offspring with 54 MSD patients. Outcomes were compared between the two matched-pair groups. The cumulative incidence of grade II/IV acute graft-versus-host disease (GVHD) (26% vs. 35%; P = 0·23) and chronic GVHD (37% vs. 24%; P = 0·19) was comparable between groups (MSD vs. offspring). The lower three-year transplant-related mortality (9% vs. 26%; P = 0·023) and relapse incidence (6% vs. 17%; P = 0·066) resulted in higher overall survival (85% vs. 58%; P = 0·003) and leukaemia-free survival (LFS) (85% vs. 56%; P = 0·001) in offspring HCT compared with that in MSD HCT. These data might favour a young offspring over an older MSD in patients >50 years. The current analyses confirm that non-HLA donor characteristics, such as kinship and donor age, rather than HLA disparity, predominantly influence survival in older acute leukaemia patients.
Assuntos
Doença Enxerto-Hospedeiro/mortalidade , Transplante de Células-Tronco Hematopoéticas , Leucemia , Irmãos , Doadores de Tecidos , Doença Aguda , Fatores Etários , Aloenxertos , Feminino , Seguimentos , Doença Enxerto-Hospedeiro/etiologia , Humanos , Incidência , Leucemia/mortalidade , Leucemia/terapia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fatores de TempoRESUMO
BACKGROUND: The diagnostic efficacy of contrast-enhanced magnetic resonance imaging (CEMRI) in diagnosing residual or recurrent hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) is currently not completely clear. PURPOSE: To investigate the diagnostic efficacy of CEMRI in detecting residual or recurrent HCCs after TACE by meta-analysis. STUDY TYPE: Systematic review and meta-analysis. POPULATION: A systematic literature search was performed in PubMed, Embase, Web of Science, Ovid, and the Cochrane Library database up to June 2019 to find original studies on diagnosing patients suspected of residual or recurrent HCCs after TACE with CEMRI. Thirteen studies comprising 721 nodules were finally included. FIELD STRENGTH/SEQUENCE: 1.5T or 3.0T, CEMRI. ASSESSMENT: Quality assessment of the included studies was performed by applying the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. STATISTICAL TESTS: Sensitivity and specificity were pooled with a bivariate random-effects model. Heterogeneity was assessed by the chi-square test. The potential sources of heterogeneity were explored by subgroup and publication bias analyses. RESULTS: The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the summary receiver operating characteristic (ROC) curve (AUC) of CEMRI in diagnosing residual or recurrent HCCs after TACE were 91% (95% confidence interval [CI]: 87%-96%), 93% (95% CI: 85%-97%), 12.22 (95% CI: 5.62-26.57), 0.09 (95% CI: 0.05-0.18), 126.99 (95% CI: 34.76-436.99) and 0.97 (95% CI: 0.95-0.98), respectively. Subgroup analysis revealed that CEMRI performed significantly better in prospective studies than in retrospective studies: 0.99 (95% CI: 0.96-1.00) vs. 0.95 (95% CI: 0.92-0.96) with P < 0.05. DATA CONCLUSION: Our meta-analysis suggested that CEMRI had high diagnostic efficacy in detecting residual or recurrent HCCs after TACE and may serve as an alternative method for further evaluation after TACE. LEVEL OF EVIDENCE: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:1019-1028.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos RetrospectivosRESUMO
Structure determines properties, and properties determine applications, which is an important ideology of natural sciences. For optical materials, it is vital to lucubrate the corresponding relationship between the local crystal structure and luminescence properties for their design, synthesis, and application. This work reports a newly designed Y2Mg2Al2Si2O12(YMAS):Eu3+ red phosphor, in which difunctional Eu3+ ion is used as a red-light activator and spectroscopic probe. The qualitative and quantitative studies on the relationship between the local crystal structure and the luminescence properties of YMAS:Eu3+ are performed experimentally and computationally, using the Y3Al5O12 (YAG):Eu3+ as contrast. Moreover, compared with YAG:Eu3+, the newly designed YMAS:Eu3+ has stronger luminescence, superior Commission Internationale de L'Eclairage chromaticity coordinates, a lower optimal doping concentration, and equally excellent thermal stability. The satisfactory color-rendering index of packaged white-light-emitting diodes demonstrates its potential performance as a red phosphor. Briefly, this work provides not only a new case for the study of the local crystal structure and luminescence properties but also a new possibility for the application of a red phosphor in solid-state lighting.
RESUMO
A series of emission-tunable Ce3+/Tb3+/Eu2+ doped Ca2(Mg0.75Al0.25)(Si1.75Al0.25)O7 (denoted as CMAS) phosphors have been synthesized via a high temperature solid-state reaction method. The luminescence properties, color tuning, quantum yields (QYs), energy transfer of Ce3+ to Tb3+/Eu2+, thermal stability, performance of LED devices and ratiometric temperature sensing application have been systematically investigated, respectively. Importantly, through the study of thermal stability, we found that Ce3+ and Tb3+ co-doped samples were suitable for WLED applications, while Ce3+ and Eu2+ co-doped samples were suitable for temperature sensing applications. Due to the energy transfer, Ce3+/Tb3+ co-doped samples had high luminous efficiency and the quantum efficiency of more than 80% could be achieved. Their emission colors can modulate from blue to green. In addition, on the basis of the evaluation of the as-fabricated white LED lamps via selecting the corresponding phosphors, the CCT can reach 4275 K and the CRI can increase to 86.8, indicating that this series of phosphors can act as potential color-tunable phosphors for possible applications in ultraviolet light based white LEDs. Importantly, it is found that the fluorescence intensity ratio of CMAS : 5%Ce3+,0.5%Eu2+ displays linear correlation with temperature in a wide range of 253-373 K with a high sensitivity of 2.49% K-1, indicating that it could be a good candidate for ratiometric optical thermometry.
RESUMO
TiO2:Eu3+ nanofibers diameters can be tuned by changing the mixed solvent ratio are synthesized via the electrospinning technique. Concentration quenching phenomena and the relationship of the PL intensity ratio I(5D0-7F2)/I(5D0-7F1) with the Eu doping concentration are discussed. Notably, the luminescence intensity is enhanced by about 7.8 fold by coating SiO2 gel layer on the TiO2:Eu3+ nanofibers, which is successfully performed via a sol-gel process followed by calcination. Furthermore, these fibers are characterized systematically via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectroscopy. Additionally, their Judd-Ofelt and spectral parameters are calculated to investigate their local structures. The relatively low Ω2 value of the coated samples reveals a decrease in covalency in the Eu-O bonds and an increase in the symmetric nature of Eu3+, which indicate that the perturbation effect of the crystal field in the solid system is larger than that of the uncoated samples. FT-IR analysis indicates the formation of Ti-O-Si bonds, which provide the ligand field in the interface between the TiO2:Eu3+ nanofibers and SiO2 layer and can repair the surface unsaturated bonds. This reduces the selection rules for radiative transitions, thereby the state of the Eu3+ ions is converted from dormant to activated. Moreover, the silica coating stabilizes the surface of the TiO2:Eu3+ nanofibers and eliminates the surface defects. Finally, a detailed mechanism is proposed to explain the luminescence enhancement behavior.