Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Blood ; 129(10): 1368-1379, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28034889

RESUMO

Anticoagulant therapy-associated bleeding and pathological thrombosis pose serious risks to hospitalized patients. Both complications could be mitigated by developing new therapeutics that safely neutralize anticoagulant activity and inhibit activators of the intrinsic blood clotting pathway, such as polyphosphate (polyP) and extracellular nucleic acids. The latter strategy could reduce the use of anticoagulants, potentially decreasing bleeding events. However, previously described cationic inhibitors of polyP and extracellular nucleic acids exhibit both nonspecific binding and adverse effects on blood clotting that limit their use. Indeed, the polycation used to counteract heparin-associated bleeding in surgical settings, protamine, exhibits adverse effects. To address these clinical shortcomings, we developed a synthetic polycation, Universal Heparin Reversal Agent (UHRA), which is nontoxic and can neutralize the anticoagulant activity of heparins and the prothrombotic activity of polyP. Sharply contrasting protamine, we show that UHRA does not interact with fibrinogen, affect fibrin polymerization during clot formation, or abrogate plasma clotting. Using scanning electron microscopy, confocal microscopy, and clot lysis assays, we confirm that UHRA does not incorporate into clots, and that clots are stable with normal fibrin morphology. Conversely, protamine binds to the fibrin clot, which could explain how protamine instigates clot lysis and increases bleeding after surgery. Finally, studies in mice reveal that UHRA reverses heparin anticoagulant activity without the lung injury seen with protamine. The data presented here illustrate that UHRA could be safely used as an antidote during adverse therapeutic modulation of hemostasis.


Assuntos
Antídotos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Antagonistas de Heparina/farmacologia , Animais , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Heparina/efeitos adversos , Humanos , Pulmão/efeitos dos fármacos , Camundongos , Poliaminas , Polieletrólitos , Protaminas/efeitos adversos
2.
Biomacromolecules ; 18(10): 3343-3358, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28880550

RESUMO

Heparins are widely used to prevent blood clotting during surgeries and for the treatment of thrombosis. However, bleeding associated with heparin therapy is a concern. Protamine, the only approved antidote for unfractionated heparin (UFH) could cause adverse cardiovascular events. Here, we describe a unique molecular design used in the development of a synthetic dendritic polycation named as universal heparin reversal agent (UHRA), an antidote for all clinically used heparin anticoagulants. We elucidate the mechanistic basis for the selectivity of UHRA to heparins and its nontoxic nature. Isothermal titration calorimetry based binding studies of UHRAs having different methoxypolyethylene glycol (mPEG) brush structures with UFH as a function of solution conditions, including ionic strength, revealed that mPEG chains impose entropic penalty to the electrostatic binding. Binding studies confirm that, unlike protamine or N-UHRA (a truncated analogue of UHRA with no mPEG chains), the mPEG chains in UHRA avert nonspecific interactions with blood proteins and provide selectivity toward heparins through a combined steric repulsion and Donnan shielding effect (a balance of Fel and Fsteric). Clotting assays reveal that UHRA with mPEG chains did not adversely affect clotting, and neutralized UFH over a wide range of concentrations. Conversely, N-UHRA and protamine display intrinsic anticoagulant activity and showed a narrow concentration window for UFH neutralization. In addition, we found that mPEG chains regulate the size of antidote-UFH complexes, as revealed by atomic force microscopy and dynamic light scattering studies. UHRA molecules with mPEG chains formed smaller complexes with UFH, compared to N-UHRA and protamine. Finally, fluorescence and ELISA experiments show that UHRA disrupts antithrombin-UFH complexes to neutralize heparin's activity.


Assuntos
Anticoagulantes/síntese química , Heparina/análogos & derivados , Anticoagulantes/efeitos adversos , Anticoagulantes/química , Antídotos/síntese química , Antídotos/química , Coagulação Sanguínea , Proteínas Sanguíneas/metabolismo , Heparina/efeitos adversos , Humanos , Concentração Osmolar , Polietilenoglicóis/química , Ligação Proteica , Eletricidade Estática
3.
Biomacromolecules ; 18(8): 2427-2438, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28655275

RESUMO

Three hyperbranched polyglycerol nanoparticle (HPG NP) variants were synthesized and fluorescently labeled for the study of their cellular interactions. The polymeric nanoparticle that contains a hydrophobic core and a hydrophilic HPG shell, HPG-C10-HPG, is taken up faster by HT-29 cancer cells than nontransformed cells, while similar uptake rates are observed with both cell types for the nanoparticle HPG-C10-PEG that contains a hydrophobic core and a polyethylene glycol shell. The nanoparticle HPG-104, containing neither the hydrophobic core nor the polyethylene glycol shell, is taken up faster by nontransformed cells than HT-29 cells. Importantly, cancer and normal cells can utilize different endocytic mechanisms for the internalization of these HPG NPs. Both HPG-C10-HPG and HPG-C10-PEG are taken up by HT-29 cells through clathrin-mediated endocytosis and macropinocytosis. Nontransformed cells, however, take up HPG-C10-HPG and HPG-104 through macropinocytosis, while these cells utilize both clathrin-mediated endocytosis and macropinocytosis to internalize HPG-C10-PEG.


Assuntos
Portadores de Fármacos , Endocitose/efeitos dos fármacos , Nanopartículas/química , Neoplasias/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Neoplasias/patologia
4.
Blood ; 124(22): 3183-90, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25202141

RESUMO

Polyphosphate (polyP) is secreted by activated platelets and has been shown to contribute to thrombosis, suggesting that it could be a novel antithrombotic target. Previously reported polyP inhibitors based on polycationic substances, such as polyethylenimine, polyamidoamine dendrimers, and polymyxin B, although they attenuate thrombosis, all have significant toxicity in vivo, likely due to the presence of multiple primary amines responsible for their polyP binding ability. In this study, we examined a novel class of nontoxic polycationic compounds initially designed as universal heparin reversal agents (UHRAs) to determine their ability to block polyP procoagulant activity and also to determine their utility as antithrombotic treatments. Several UHRA compounds strongly inhibited polyP procoagulant activity in vitro, and 4 were selected for further examination in mouse models of thrombosis and hemostasis. Compounds UHRA-9 and UHRA-10 significantly reduced arterial thrombosis in mice. In mouse tail bleeding tests, administration of UHRA-9 or UHRA-10 was associated with significantly less bleeding compared with therapeutically equivalent doses of heparin. Thus, these compounds offer a new platform for developing novel antithrombotic agents that target procoagulant anionic polymers such as polyP with reduced toxicity and bleeding side effects.


Assuntos
Dendrímeros/farmacologia , Fibrinolíticos/farmacologia , Hemostasia/efeitos dos fármacos , Polifosfatos/antagonistas & inibidores , Trombose/prevenção & controle , Animais , Coagulação Sanguínea/efeitos dos fármacos , Dendrímeros/efeitos adversos , Dendrímeros/química , Fibrinolíticos/efeitos adversos , Fibrinolíticos/química , Heparina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polifosfatos/metabolismo , Ligação Proteica/efeitos dos fármacos , Trombina/metabolismo , Trombose/sangue
5.
Biomacromolecules ; 17(11): 3683-3693, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27750017

RESUMO

Understanding the influence of degradable chemical moieties on in vivo degradation, tissue distribution, and excretion is critical for the design of novel biodegradable drug carriers. Polyketals have recently emerged as a promising therapeutic delivery platform due to their ability to degrade under mild acidic intracellular compartments and generation of nontoxic degradation products. However, the effect of chemical structure of the ketal groups on the in vivo degradation, biodistribution, and pharmacokinetics of water-soluble ketal-containing polymers has not been explored. In the present work, we synthesized high molecular weight, water-soluble biodegradable hyperbranched polyglycerols (BHPGs) through the incorporation of structurally different ketal groups into the main chain of highly biocompatible polyglycerols. BHPGs showed pH and ketal group structure dependent degradation in buffer solutions. When the polymers were intravenously administered in mice, a strong dependence of in vivo degradation, biodistribution, and clearance on the ketal group structure was observed. All the BHPGs demonstrated degradation and clearance in vivo, with minimal tissue accumulation. Interestingly, an unanticipated degradation behavior of BHPGs with structurally different ketal groups was observed in vivo in comparison to their degradation in buffer solutions. BHPGs with cyclohexyl ketal (CHK) and cyclopentyl ketal (CPK) groups degraded much faster and were cleared from circulation much rapidly, while BHPG with glycerol hydroxy butanone ketal (GHBK) group degraded at a much slower rate and exhibited similar plasma half-life as that of nondegradable HPG. BHPG-GHBK also showed significantly lower tissue accumulation than nondegradable HPG after 30 days of administration. The difference in in vivo degradation may be attributed to the difference in hydrophobic characteristics of different ketal containing polymers, which may change their interaction with proteins and cells in vivo. This is the first study that demonstrates the influence of chemical structure of ketal groups on in vivo degradation and circulation profile of polymers, and through proper surface modifications, these polymers would be useful as multifunctional drug carriers.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Glicerol/química , Polímeros/química , Ácidos/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Glicerol/síntese química , Glicerol/farmacocinética , Humanos , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/farmacocinética , Distribuição Tecidual , Água/química
6.
Biomacromolecules ; 16(3): 913-23, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25664972

RESUMO

Aurein 2.2 is an antimicrobial peptide (AMP) whose mechanism of action is quite well-understood and that has good activity against Gram-positive bacteria. It is, however, highly cytotoxic. Poly(ethylene glycol) (PEG) conjugation (PEGylation) of protein and peptide drugs has been used for decades to improve their in vivo efficacy and blood circulation by enhancing the biocompatibility of the protein or peptide in question. However, the relatively large hydrodynamic size, high intrinsic viscosity, the limited number of functional groups available for conjugation, and immunogenicity of high molecular weight PEG limits its use in bioconjugation applications. Recently, hyperbranched polyglycerol (HPG) has been gaining attention as an alternative to PEG due to its excellent biocompatibility. Here, for the first time, we report the synthesis of HPG conjugates of antimicrobial peptides. Aurein 2.2 peptide was conjugated to high molecular weight HPG with a varying number of peptides per polymer, and the biocompatibility and antimicrobial activity of the conjugates were investigated. The antimicrobial activity of the peptide and its conjugates were determined by measuring the minimal inhibitory concentration (MIC) against Staphylococcus aureus and Staphylococcus epidermidis. The interaction of aurein 2.2 peptide and the conjugates with a model bacterial biomembrane was investigated using CD spectroscopy to understand the mode of action of the conjugates. The biocompatibility of the AMP-polymer conjugates was investigated by measuring red cell lysis, platelet activation and aggregation, complement activation, blood coagulation, and cell toxicity. Our results show that the size of the conjugates and the peptide density influence the biocompatibility of the antimicrobial conjugates. These results will help to further define the properties of HPG-AMP conjugates and set the stage for development of better therapeutic agents.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Glicerol/química , Polímeros/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Plaquetas/efeitos dos fármacos , Células Cultivadas , Ativação do Complemento , Eritrócitos/efeitos dos fármacos , Glicerol/farmacologia , Hemólise , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Tempo de Tromboplastina Parcial , Agregação Plaquetária/efeitos dos fármacos , Polímeros/farmacologia , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
7.
Nanomedicine ; 11(7): 1785-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25981338

RESUMO

We report the synthesis and characterization of a polymeric nanoparticle (NP) based on hyperbranched polyglycerol (HPG) containing a hydrophobic core and a hydrophilic shell, and assessed its suitability to be developed as a systemic anticancer drug carrier. HPG NP displayed low toxicity to primary cell cultures and were well-tolerated in mice after intravenous administration. When tested in mice tumor xenograft models, HPG NP accumulated significantly in the tumors with low accumulation in the liver and the spleen. In vitro studies demonstrated that HPG NP was capable of hydrophobically binding docetaxel and releasing it in a controlled manner. The HPG NP formulation of docetaxel conferred a preferential protective effect on primary non-cancerous cells while effectively killing cancer cells, indicating great potential for widening its therapeutic index. Taken together, these data indicate that HPG NP is a highly promising nanocarrier platform for systemic delivery of anticancer drugs. FROM THE CLINICAL EDITOR: The use of polyethylene glycol on nano-carriers as "stealth" to deliver intravenous drugs is well known. Here, the authors developed polymeric nanoparticle (NP) with hyperbranched polyglycerol (HPG) and tested its efficacy in delivering docetaxel. The results showed that this formulation could preferentially killed cancer cells with a high therapeutic index. It seems that this platform could have a great potential in cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Taxoides/administração & dosagem , Animais , Docetaxel , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Glicerol/administração & dosagem , Glicerol/química , Células HT29 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanopartículas/química , Neoplasias/patologia , Polímeros/administração & dosagem , Polímeros/química , Taxoides/química , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Am Chem Soc ; 134(36): 14945-57, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22906064

RESUMO

Multifunctional biocompatible and biodegradable nanomaterials incorporating specific degradable linkages that respond to various stimuli and with defined degradation profiles are critical to the advancement of targeted nanomedicine. Herein we report, for the first time, a new class of multifunctional dendritic polyether polyketals containing different ketal linkages in their backbone that exhibit unprecedented control over degradation in solution and within the cells. High-molecular-weight and highly compact poly(ketal hydroxyethers) (PKHEs) were synthesized from newly designed α-epoxy-ω-hydroxyl-functionalized AB(2)-type ketal monomers carrying structurally different ketal groups (both cyclic and acyclic) with good control over polymer properties by anionic ring-opening multibranching polymerization. Polymer functionalization with multiple azide and amine groups was achieved without degradation of the ketal group. The polymer degradation was controlled primarily by the differences in the structure and torsional strain of the substituted ketal groups in the main chain, while for polymers with linear (acyclic) ketal groups, the hydrophobicity of the polymer may play an additional role. This was supported by the log P values of the monomers and the hydrophobicity of the polymers determined by fluorescence spectroscopy using pyrene as the probe. A range of hydrolysis half-lives of the polymers at mild acidic pH values was achieved, from a few minutes to a few hundred days, directly correlating with the differences in ketal group structures. Confocal microscopy analyses demonstrated similar degradation profiles for PKHEs within live cells, as seen in solution and the delivery of fluorescent marker to the cytosol. The cell viability measured by MTS assay and blood compatibility determined by complement activation, platelet activation, and coagulation assays demonstrate that PKHEs and their degradation products are highly biocompatible. Taken together, these data demonstrate the utility this new class of biodegradable polymer as a highly promising candidate in the development of multifunctional nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Éteres/química , Éteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Álcoois/síntese química , Álcoois/química , Animais , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Éteres/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polímeros/farmacologia , Soluções , Relação Estrutura-Atividade , Temperatura
9.
Biomacromolecules ; 13(10): 3018-30, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22920950

RESUMO

Herein we report the synthesis of biodegradable hyperbranched polyglycerols (BHPGs) having acid-cleavable core structure by anionic ring-opening multibranching polymerization (ROMBP) of glycidol using initiators bearing dimethyl and cyclohexyl ketal groups. Five different multifunctional initiators carrying one to four ketal groups and two to four hydroxyl groups per molecule were synthesized. The hydroxyl carrying initiators containing one ketal group per molecule were synthesized from ethylene glycol. An alkyne-azide click reaction was used for synthesizing initiators containing multiple cyclohexyl ketal linkages and hydroxyl groups. The synthesized BHPGs exhibited monomodal molecular weight distributions and polydispersity in the range of 1.2 to 1.6, indicating the controlled nature of the polymerizations. The polymers were relatively stable at physiological pH but degraded at acidic pH values. The polymer degradation was dependent on the type of ketal structure present in the BHPG; polymers with cyclohexyl ketal groups degraded at much slower rates than those with dimethyl ketal groups at a given pH. Good control of polymer degradation was achieved under mild acidic conditions by changing the structure of ketal linkages. A precise control of the molecular weight of the degraded HPG was achieved by controlling the number of ketal groups within the core, as revealed from the gel permeation chromatography (GPC) analyses. The decrease in the polymer molecular weights upon degradation was correlated well with the number of ketal groups in their core structure. Our data support the suggestion that glycidol was polymerized uniformly from all hydroxyl groups of the initiators. BHPGs and their degradation products were highly biocompatible, as measured by blood coagulation, complement activation, platelet activation, and cell viability assays. The controlled degradation profiles of these polymers together with their excellent biocompatibility make them suitable for drug delivery and bioconjugation applications.


Assuntos
Ácidos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Glicerol/química , Glicerol/síntese química , Polímeros/química , Polímeros/síntese química , Alcinos/química , Azidas/química , Cromatografia em Gel , Química Click , Compostos de Epóxi/química , Etilenoglicol/química , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Peso Molecular , Polimerização , Propanóis/química
10.
Anal Chem ; 83(17): 6500-10, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21774540

RESUMO

High molecular weight hyperbranched polyglycerol (HPG) was selected for development as a soluble polymer support for the targeted selection and release of primary-amine containing peptides from a complex mixture. HPG has been functionalized with ester-linked aldehyde groups that can bind primary-amine containing peptides via a reductive alkylation reaction. Once bound, the high molecular weight of the polymer facilitates separation from a complex peptide mixture by employing either a 30 kDa molecular weight cutoff membrane or precipitation in acetonitrile. Following the removal of unbound peptides and reagents, subsequent hydrolysis of the ester linker releases the bound peptide into solution for analysis by mass spectrometry. Released peptides retain the linker moiety and are therefore characteristically mass-shifted. Four water-soluble cleavable aldehyde polymers (CAP1, CAP2, CAP3, and CAP4) ranging in types of linker groups, length of the linker groups, have been prepared and characterized, each demonstrating the ability to selectively enrich and sequence primary-amine peptides from a complex human proteome containing blocked (dimethylated amine) and unblocked (primary amine) peptides. The polymers have very low nonspecific peptide-binding properties while possessing significantly more reactive groups per milligram of the support than commercially available resins. The polymers exhibit a range of reactivities and binding capacities that depend on the type of linker group between the aldehyde group and the polymer. Using various linker structures, we also probed the mechanism of the observed dehydration of hydrolyzed peptides during matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis.


Assuntos
Aldeídos/química , Glicerol/química , Polímeros/química , Proteômica/métodos , Ésteres , Glicerol/síntese química , Peptídeos/química , Polímeros/síntese química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Phytochemistry ; 186: 112735, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839454

RESUMO

The triterpenoid saponins, asiaticoside and madecassoside from Centella asiatica (L.) Urb. are known to have a wide range of applications in pharmaceutical and cosmetic industries. The effect of addition of Potential Metabolite Stimulants (PMSs) - casein acid hydrolysate, meat peptone, salicylic acid, copper sulphate, and silver nitrate, on the concentrations of these saponins and transcript levels of associated genes encoding important biosynthetic enzymes, was assessed in axenic shoot cultures of C. asiatica. Among the stimulants, silver nitrate induced asiaticoside content approximately 6-fold increase in madecassoside levels, after three weeks post-treatment with a decrease in biomass compared to its control. Gene expression analysis of essential genes involved in triterpenoid synthesis such as ß-amyrin synthase showed an upregulation of approximately 50-fold at the third week of silver nitrate treatment compared to control. These findings suggest that silver nitrate can act as a metabolite stimulant, to enhance the formation of triterpenoids in axenic shoot culture of C. asiatica, which could be utilized in studying the regulation of terpenoid biosynthesis and biotechnological application for the increased production of these bioactive molecules.


Assuntos
Centella , Saponinas , Triterpenos , Saponinas/farmacologia , Triterpenos/farmacologia
12.
Biomacromolecules ; 11(10): 2567-75, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20804173

RESUMO

We report the synthesis and characterization of multivalent mannose conjugates based on high molecular weight hyperbranched polyglycerols (HPG). A range of glycoconjugates were synthesized from high molecular weight HPGs (up to 493 kDa) and varying mannose units (22-303 per HPG). Hemagglutination assays using fresh human red blood cells and concanavalin A (Con A) showed that HPG-mannose conjugates exhibited a large enhancement in the relative potency of conjugates (as high as 40000) along with a significant increment in relative activity per sugar (up to 255). The size of the HPG scaffold and the number of mannose residues per HPG were all shown to influence the enhancement of binding interactions with Con A. Isothermal titration calorimetry (ITC) experiments confirmed the enhanced binding affinity and showed that both molecular size and ligand density play important roles. The enhancement in Con A binding to the high molecular weight HPG-mannose conjugates is due to a combination of inter- and intramolecular mannose binding. A few fold increments in the binding constant were obtained over mannose upon covalent attachment to HPG. The binding enhancement is due to the highly favorable entropic contribution to the multiple interactions of Con A to mannose residues on HPG. The high molecular weight HPG-mannose conjugates showed positive cooperativity in binding to Con A. Although carbohydrate density has less of an effect on functional valency of the conjugate compared to the molecular size, it determines the binding affinity.


Assuntos
Glicerol/química , Glicoconjugados/síntese química , Manose/química , Polímeros/química , Concanavalina A/metabolismo , Eritrócitos/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Testes de Hemaglutinação , Humanos , Peso Molecular , Ligação Proteica
13.
Nat Commun ; 11(1): 3048, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546688

RESUMO

Nanomaterials in the blood must mitigate the immune response to have a prolonged vascular residency in vivo. The composition of the protein corona that forms at the nano-biointerface may be directing this, however, the possible correlation of corona composition with blood residency is currently unknown. Here' we report a panel of new soft single molecule polymer nanomaterials (SMPNs) with varying circulation times in mice (t1/2ß ~ 22 to 65 h) and use proteomics to probe protein corona at the nano-biointerface to elucidate the mechanism of blood residency of nanomaterials. The composition of the protein opsonins on SMPNs is qualitatively and quantitatively dynamic with time in circulation. SMPNs that circulate longer are able to clear some of the initial surface-bound common opsonins, including immunoglobulins, complement, and coagulation proteins. This continuous remodelling of protein opsonins may be an important decisive step in directing elimination or residence of soft nanomaterials in vivo.


Assuntos
Materiais Biocompatíveis/farmacocinética , Nanoestruturas/administração & dosagem , Proteínas Opsonizantes/sangue , Polímeros/metabolismo , Administração Intravenosa , Animais , Circulação Sanguínea , Feminino , Meia-Vida , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Proteínas Opsonizantes/química , Proteínas Opsonizantes/metabolismo , Polímeros/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Espectrometria de Massas em Tandem , Distribuição Tecidual
14.
J Biomed Nanotechnol ; 12(5): 1089-100, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27305828

RESUMO

PEGylation is commonly used to increase the plasma residence time of anticancer drug nanocarriers. However, PEGylation may trigger antibody production and lead to accelerated blood clearance in subsequent administrations. Moreover, the presence of PEG shells on nanocarriers may also hamper endosomal escape and decrease drug payload release. To avoid these shortcomings, we synthesized and evaluated a non-PEGylated, hyperbranched polyglycerol nanoparticle (HPG NP) with a hydrophobic core and a hydrophilic HPG shell, HPG-C10-HPG, as a candidate for systemic delivery of anticancer drug. In vitro studies with primary human cell lines revealed that HPG-C10-HPG possesses low cytotoxicity. The presence of long chain alkyl groups (C1o) in the core as the hydrophobic pocket in the NP enabled the binding and sustained release of the hydrophobic drug docetaxel. Remarkably, the docetaxel-loaded HPG-C10-HPG formulation also confers preferential protection to primary cells, when compared to cancer cells, potentially widening the therapeutic index. HPG-C10-HPG, however, accumulated at higher levels in the liver and spleen when administered intravenously in mice. Comparing the biodistribution patterns of HPG-C10-HPG, PEGylated HPG-C10-PEG, and unmodified HPG in a xenograft model reveals that the accumulation pattern of HPG-C10-HPG was attributed to insufficient shielding of the hydrophobic groups by the HPG shell. Our results revealed the influence of the nature of the hydrophilic shell and the presence of hydrophobic groups on the tumor-to-tissue accumulation specificities of these HPG NP variants. Therefore, the present study provides insights into the structural considerations of future HPG NP designs for systemic drug delivery.


Assuntos
Portadores de Fármacos/química , Glicerol/química , Glicerol/síntese química , Nanopartículas/química , Polímeros/química , Polímeros/síntese química , Animais , Linhagem Celular , Docetaxel , Liberação Controlada de Fármacos , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/toxicidade , Taxoides/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Testes de Toxicidade
15.
Sci Transl Med ; 6(260): 260ra150, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355700

RESUMO

Heparin-based anticoagulant drugs have been widely used for the prevention of blood clotting during surgical procedures and for the treatment of thromboembolic events. However, bleeding risks associated with these anticoagulants demand continuous monitoring and neutralization with suitable antidotes. Protamine, the only clinically approved antidote to heparin, has shown adverse effects and ineffectiveness against low-molecular weight heparins and fondaparinux, a heparin-related medication. Alternative approaches based on cationic molecules and recombinant proteins have several drawbacks including limited efficacy, toxicity, immunogenicity, and high cost. Thus, there is an unmet clinical need for safer, rapid, predictable, and cost-effective anticoagulant-reversal agents for all clinically used heparins. We report a design strategy for a fully synthetic dendritic polymer-based universal heparin reversal agent (UHRA) that makes use of multivalent presentation of branched cationic heparin binding groups (HBGs). Optimization of the UHRA design was aided by isothermal titration calorimetry studies, biocompatibility evaluation, and heparin neutralization analysis. By controlling the scaffold's molecular weight, the nature of the protective shell, and the presentation of HBGs on the polymer scaffold, we arrived at lead UHRA molecules that completely neutralized the activity of all clinically used heparins. The optimized UHRA molecules demonstrated superior efficacy and safety profiles and mitigated heparin-induced bleeding in animal models. This new polymer therapeutic may benefit patients undergoing high-risk surgical procedures and has potential for the treatment of anticoagulant-related bleeding problems.


Assuntos
Anticoagulantes/síntese química , Heparina/síntese química , Anticoagulantes/farmacologia , Calorimetria , Heparina/farmacologia
16.
Biomaterials ; 34(25): 6068-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23688604

RESUMO

Biodegradable multi-functional polymeric nanostructures that undergo controlled degradation in response to physiological cues are important in numerous biomedical applications including drug delivery, bio-conjugation and tissue engineering. In this paper, we report the development of a new class of water soluble multi-functional branched biodegradable polymer with high molecular weight and biocompatibility which demonstrates good correlation of in vivo biodegradation and in vitro hydrolysis. Main chain degradable hyperbranched polyglycerols (HPG) (20-100 kDa) were synthesized by the introduction of acid labile groups within the polymer structure by an anionic ring opening copolymerization of glycidol with ketal-containing epoxide monomers with different ketal structures. The water soluble biodegradable HPGs with randomly distributed ketal groups (RBHPGs) showed controlled degradation profiles in vitro depending on the pH of solution, temperature and the structure of incorporated ketal groups, and resulted in non-toxic degradation products. NMR studies demonstrated the branched nature of RBHPGs which is correlating with their smaller hydrodynamic radii. The RBHPGs and their degradation products exhibited excellent blood compatibility and tissue compatibility based on various analyses methods, independent of their molecular weight and ketal group structure. When administered intravenously in mice, tritium labeled RBHPG of molecular weight 100 kDa with dimethyl ketal group showed a circulation half life of 2.7 ± 0.3 h, correlating well with the in vitro polymer degradation half life (4.3 h) and changes in the molecular weight profile during the degradation (as measured by gel permeation chromatography) in buffer conditions at 37 °C. The RBHPG degraded into low molecular weight fragments that were cleared from circulation rapidly. The biodistribution and excretion studies demonstrated that RBHPG exhibited significantly lower tissue accumulation and enhanced urinary and fecal excretion when compared to non-degradable HPG of similar molecular weight. Excellent biocompatibility together with in vivo degradability and clearance of RBHPGs make them attractive for the development of multi-functional drug delivery systems.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Glicerol/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C
17.
ACS Nano ; 7(12): 10704-16, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24256569

RESUMO

Patients requiring chronic red blood cell (RBC) transfusions for inherited or acquired anemias are at risk of developing transfusional iron overload, which may impact negatively on organ function and survival. Current iron chelators are suboptimal due to the inconvenient mode of administration and/or side effects. Herein, we report a strategy to engineer low molecular weight iron chelators with long circulation lifetime for the removal of excess iron in vivo using a multifunctional dendritic nanopolymer scaffold. Desferoxamine (DFO) was conjugated to hyperbranched polyglycerol (HPG) and the plasma half-life (t1/2) in mice is defined by the structural features of the scaffold. There was a 484 fold increase in t1/2 between the DFO (5 min) versus the HPG-DFO (44 h). In an iron overloaded mouse model, efficient iron excretion by HPG-DFO in the urine and feces was demonstrated (p = 0.0002 and 0.003, respectively) as was a reduction in liver, heart, kidney, and pancreas iron content, and plasma ferritin level (p = 0.003, 0.001, 0.001, 0.001, and 0.003, respectively) compared to DFO. Conjugates showed no apparent toxicity in several analyses including body weight, serum lactate dehydrogenase level, necropsy analysis, and by histopathological examination of organs. These findings were supported by in vitro biocompatibility analyses, including blood coagulation, platelet activation, complement activation, red blood cell aggregation, hemolysis, and cell viability. This nanopolymer-based chelating system would potentially benefit patients suffering from transfusional iron overload.


Assuntos
Quelantes/química , Eritrócitos/metabolismo , Ferro/isolamento & purificação , Polímeros/química , Animais , Materiais Biocompatíveis , Sobrevivência Celular , Ativação do Complemento , Desferroxamina/química , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Ferritinas/química , Glicerol/química , Hemólise , Células Endoteliais da Veia Umbilical Humana , Humanos , Sobrecarga de Ferro/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanotecnologia , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Tromboelastografia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA