Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 48(4): 601-11, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23041283

RESUMO

Poorly structured domains in proteins enhance their susceptibility to proteasomal degradation. To learn whether the presence of such a domain near either end of a protein determines its direction of entry into the proteasome, directional translocation was enforced on several proteasome substrates. Using archaeal PAN-20S complexes, mammalian 26S proteasomes, and cultured cells, we identified proteins that are degraded exclusively from either the C or N terminus and some showing no directional preference. This property results from interactions of the substrate's termini with the regulatory ATPase and could be predicted based on the calculated relative stabilities of the N and C termini. Surprisingly, the direction of entry into the proteasome affected markedly the spectrum of peptides released and consequently influenced the efficiency of MHC class I presentation. Thus, easily unfolded termini are translocated first, and the direction of translocation influences the peptides generated and presented to the immune system.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Desdobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Calmodulina/química , Calmodulina/imunologia , Calmodulina/metabolismo , Caseínas/química , Caseínas/imunologia , Caseínas/metabolismo , Linhagem Celular Tumoral , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/imunologia , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Ovalbumina/química , Ovalbumina/imunologia , Ovalbumina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Transporte Proteico , Proteínas/imunologia
2.
Proc Natl Acad Sci U S A ; 109(44): 17839-44, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22847411

RESUMO

We present an integrated experimental and computational study of the molecular mechanisms by which myristoylation affects protein folding and function, which has been little characterized to date. Myristoylation, the covalent linkage of a hydrophobic C14 fatty acyl chain to the N-terminal glycine in a protein, is a common modification that plays a critical role in vital regulated cellular processes by undergoing reversible energetic and conformational switching. Coarse-grained folding simulations for the model pH-dependent actin- and membrane-binding protein hisactophilin reveal that nonnative hydrophobic interactions of the myristoyl with the protein as well as nonnative electrostatic interactions have a pronounced effect on folding rates and thermodynamic stability. Folding measurements for hydrophobic residue mutations of hisactophilin and atomistic simulations indicate that the nonnative interactions of the myristoyl group in the folding transition state are nonspecific and robust, and so smooth the energy landscape for folding. In contrast, myristoyl interactions in the native state are highly specific and tuned for sensitive control of switching functionality. Simulations and amide hydrogen exchange measurements provide evidence for increases as well as decreases in stability localized on one side of the myristoyl binding pocket in the protein, implicating strain and altered dynamics in switching. The effects of folding and function arising from myristoylation are profoundly different from the effects of other post-translational modifications.


Assuntos
Ácido Mirístico/química , Dobramento de Proteína , Proteínas/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Eletricidade Estática , Termodinâmica
3.
J Am Chem Soc ; 136(50): 17547-60, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25409346

RESUMO

PEGylation of protein side chains has been used for more than 30 years to enhance the pharmacokinetic properties of protein drugs. However, there are no structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based pharmacokinetic enhancement with minimal losses to biological activity. We hypothesize that globally optimal PEGylation sites are characterized by the ability of the PEG oligomer to increase protein conformational stability; however, the current understanding of how PEG influences the conformational stability of proteins is incomplete. Here we use the WW domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on protein conformational stability. Using a combination of experimental and theoretical approaches, we develop a structure-based method for predicting which sites within WW are most likely to experience PEG-based stabilization, and we show that this method correctly predicts the location of a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround the protein. Our results highlight the possibility of using modern site-specific PEGylation techniques to install PEG oligomers at predetermined locations where PEG will provide optimal increases in conformational and proteolytic stability.


Assuntos
Polietilenoglicóis/química , Estabilidade Proteica , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Conformação Proteica , Termodinâmica
4.
J Chem Phys ; 135(14): 141104, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22010687

RESUMO

Conjugating flexible polymers (such as oligosaccharides) to proteins or confining a protein in a restricted volume often increases protein thermal stability. In this communication, we investigate the interplay between conjugation and confinement which is not trivial as the magnitude and the mechanism of stabilization are different in each instance. Using coarse-grained computational approach the folding biophysics is studied when the protein is placed in a sphere of variable radius and is conjugated to 0-6 mono- or penta-saccharides. We observe a synergistic effect on thermal stability when short oligosaccharides are attached and the modified protein is confined in a small cage. However, when large oligosaccharides are added, a conflict between confinement and glycosylation arises as the stabilizing effect of the cage is dramatically reduced and it is almost impossible to further stabilize the protein beyond the mild stabilization induced by the sugars.


Assuntos
Glicoproteínas/química , Dobramento de Proteína , Glicosilação , Oligossacarídeos/química , Estabilidade Proteica , Termodinâmica
5.
Proc Natl Acad Sci U S A ; 105(24): 8256-61, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550810

RESUMO

Glycosylation is one of the most common posttranslational modifications to occur in protein biosynthesis, yet its effect on the thermodynamics and kinetics of proteins is poorly understood. A minimalist model based on the native protein topology, in which each amino acid and sugar ring was represented by a single bead, was used to study the effect of glycosylation on protein folding. We studied in silico the folding of 63 engineered SH3 domain variants that had been glycosylated with different numbers of conjugated polysaccharide chains at different sites on the protein's surface. Thermal stabilization of the protein by the polysaccharide chains was observed in proportion to the number of attached chains. Consistent with recent experimental data, the degree of thermal stabilization depended on the position of the glycosylation sites, but only very weakly on the size of the glycans. A thermodynamic analysis showed that the origin of the enhanced protein stabilization by glycosylation is destabilization of the unfolded state rather than stabilization of the folded state. The higher free energy of the unfolded state is enthalpic in origin because the bulky polysaccharide chains force the unfolded ensemble to adopt more extended conformations by prohibiting formation of a residual structure. The thermodynamic stabilization induced by glycosylation is coupled with kinetic stabilization. The effects introduced by the glycans on the biophysical properties of proteins are likely to be relevant to other protein polymeric conjugate systems that regularly occur in the cell as posttranslational modifications or for biotechnological purposes.


Assuntos
Simulação por Computador , Entropia , Glicoproteínas/química , Modelos Químicos , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Glicoproteínas/genética , Glicosilação , Estrutura Secundária de Proteína , Domínios de Homologia de src/genética
6.
Trends Biochem Sci ; 31(4): 192-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16530414

RESUMO

Polypeptides chains are segregated by the translocon channel into secreted or membrane-inserted proteins. Recent reports claim that an in vivo system has been used to break the "amino acid code" used by translocons to make the determination of protein type (i.e. secreted or membrane-inserted). However, the experimental setup used in these studies could have confused the derivation of this code, in particular for polar amino acids. These residues are likely to undergo stabilizing interactions with other protein components in the experiment, shielding them from direct contact with the inhospitable membrane. Hence, it is our view that the "code" for protein translocation has not yet been deciphered and that further experiments are required for teasing apart the various energetic factors contributing to protein translocation.


Assuntos
Código Genético , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Humanos , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional/fisiologia
7.
J Am Chem Soc ; 132(43): 15359-67, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20936810

RESUMO

Asparagine glycosylation is one of the most common and important post-translational modifications of proteins in eukaryotic cells. N-glycosylation occurs when a triantennary glycan precursor is transferred en bloc to a nascent polypeptide (harboring the N-X-T/S sequon) as the peptide is cotranslationally translocated into the endoplasmic reticulum (ER). In addition to facilitating binding interactions with components of the ER proteostasis network, N-glycans can also have intrinsic effects on protein folding by directly altering the folding energy landscape. Previous work from our laboratories (Hanson et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 109, 3131-3136; Shental-Bechor, D.; Levy, Y. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8256-8261) suggested that the three sugar residues closest to the protein are sufficient for accelerating protein folding and stabilizing the resulting structure in vitro; even a monosaccharide can have a dramatic effect. The highly conserved nature of these three proximal sugars in N-glycans led us to speculate that introducing an N-glycosylation site into a protein that is not normally glycosylated would stabilize the protein and increase its folding rate in a manner that does not depend on the presence of specific stabilizing protein-saccharide interactions. Here, we test this hypothesis experimentally and computationally by incorporating an N-linked GlcNAc residue at various positions within the Pin WW domain, a small ß-sheet-rich protein. The results show that an increased folding rate and enhanced thermodynamic stability are not general, context-independent consequences of N-glycosylation. Comparison between computational predictions and experimental observations suggests that generic glycan-based excluded volume effects are responsible for the destabilizing effect of glycosylation at highly structured positions. However, this reasoning does not adequately explain the observed destabilizing effect of glycosylation within flexible loops. Our data are consistent with the hypothesis that specific, evolved protein-glycan contacts must also play an important role in mediating the beneficial energetic effects on protein folding that glycosylation can confer.


Assuntos
Asparagina/metabolismo , Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Glicosilação , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Termodinâmica
9.
Biochim Biophys Acta ; 1565(1): 81-9, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12225855

RESUMO

X-ray studies show that influenza hemagglutinin (HA) forms an elongated structure connecting the influenza virus at one end to cell-surface receptors at the other. At neutral pH, the 20 N-terminal residues of HA2-referred to as the fusion peptide-are buried in a hydrophobic pocket, about 100 A away from the receptor-binding site, and thus seem unlikely to affect HA binding to the receptor. To test this assumption, we mutated residues in the fusion peptide, heterologically expressed the mutated proteins in COS7 cells, and examined their ability to bind fluorescently labeled red blood cells (RBCs). Surprisingly, a significantly reduced binding was recorded for some of the mutants. Ample experimental data indicate that HA has at least two forms: the native structure at neutral pH (N) that is metastable and the fusogenic form (F), observed at low pH, which is stable. Thus, a simple interpretation of our data is that HA can bind to its receptors at the RBC surface in the N form much more effectively than in the F (or in any other stable) form and that the altered binding properties are due to destabilizing effects of the mutations on the N form. That is, some of the mutations involve reduction in the free energy barrier between the N and F forms. This, in turn, leads to reduction in the population of the N form, which is the only form capable of binding to the cell-surface receptors. To explore this possibility, we estimated the stability free energy difference between HA wild-type (wt) and mutants in the N form using an empirical surface tension coefficient. The calculated stability differences correlated well with the measured binding, supporting the above interpretation. Our results are examined taking into account the available experimental data on the affinity of different soluble and membrane-attached forms of HA to its receptors.


Assuntos
Hemaglutininas Virais/imunologia , Orthomyxoviridae/imunologia , Receptores de Superfície Celular/imunologia , Animais , Células COS/metabolismo , Membrana Eritrocítica/imunologia , Hemaglutininas Virais/biossíntese , Hemaglutininas Virais/genética , Concentração de Íons de Hidrogênio , Mutação , Orthomyxoviridae/metabolismo , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/imunologia , Termodinâmica , Fatores de Tempo , Transfecção
10.
J Phys Chem Lett ; 6(18): 3572-7, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722726

RESUMO

Glycosylation plays not only a functional role but can also modify the biophysical properties of the modified protein. Usually, natural glycosylation results in protein stabilization; however, in vitro and in silico studies showed that sometimes glycosylation results in thermodynamic destabilization. Here, we applied coarse-grained and all-atom molecular dynamics simulations to understand the mechanism underlying the loss of stability of the MM1 protein by glycosylation. We show that the origin of the destabilization is a conformational distortion of the protein caused by the interaction of the monosaccharide with the protein surface. Though glycosylation creates new short-range glycan-protein interactions that stabilize the conjugated protein, it breaks long-range protein-protein interactions. This has a destabilizing effect because the probability of long- and short-range interactions forming differs between the folded and unfolded states. The destabilization originates not from simple loss of interactions but due to a trade-off between the short- and long-range interactions.


Assuntos
Príons/química , Termodinâmica , Glicosilação , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Propriedades de Superfície
11.
J Phys Chem B ; 114(12): 4230-7, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20201501

RESUMO

We used Monte Carlo simulations and biophysical measurements to study the interaction of NKCS, a derivative of the antimicrobial peptide NK-2, with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membrane. The simulations showed that NKCS adsorbed on the membrane surface and the dominant conformation featured two amphipathic helices connected by a hinge region. We designed two mutants in the hinge to investigate the interplay between helicity and membrane affinity. Simulations with a Leu-to-Pro substitution showed that the helicity and membrane affinity of the mutant (NKCS-[LP]) decreased. Two Ala residues were added to NKCS to produce a sequence that is compatible with a continuous amphipathic helix structure (NKCS-[AA]), and the simulations showed that the mutant adsorbed on the membrane surface with a particularly high affinity. The circular dichroism spectra of the three peptides also showed that NKCS-[LP] is the least helical and NKCS-[AA] is the most. However, the activity of the peptides, determined in terms of their antimicrobial potency and influence on the temperature of the transition of the lipid to hexagonal phase, displayed a complex behavior: NKCS-[LP] was the least potent and had the smallest influence on the transition temperature, and NKCS was the most potent and had the largest effect on the temperature.


Assuntos
Anti-Infecciosos/química , Membranas Artificiais , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
12.
Curr Opin Struct Biol ; 19(5): 524-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19647993

RESUMO

Glycosylation is among the most common post-translational modifications that proteins undergo that may affect many of their activities. It may also modify the underlying energy landscape of glycoproteins in a way that their altered biophysical characteristics are linked to their bioactivity. Yet, the capability of glycosylation to modify thermodynamic and kinetic properties varies greatly between glycoproteins. Deciphering the 'glycosylation code' that dictates the interplay between the nature of the carbohydrates or the proteins and the biophysical properties of the glycosylated proteins is essential. In this article, we discuss how the size, number, and structure of glycans, as well as the attachment sites, may modulate the folding of glycoproteins. Understanding the cross-talks between the protein and the attached glycans at the molecular level may assist in tailoring the biophysical properties of proteins in general.


Assuntos
Fenômenos Biofísicos , Glicoproteínas/química , Glicoproteínas/metabolismo , Dobramento de Proteína , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional , Termodinâmica
13.
Biophys J ; 93(6): 1858-71, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17496025

RESUMO

We present a computational model of the interaction between hydrophobic cations, such as the antimicrobial peptide, Magainin2, and membranes that include anionic lipids. The peptide's amino acids were represented as two interaction sites: one corresponds to the backbone alpha-carbon and the other to the side chain. The membrane was represented as a hydrophobic profile, and its anionic nature was represented by a surface of smeared charges. Thus, the Coulombic interactions between the peptide and the membrane were calculated using the Gouy-Chapman theory that describes the electrostatic potential in the aqueous phase near the membrane. Peptide conformations and locations near the membrane, and changes in the membrane width, were sampled at random, using the Metropolis criterion, taking into account the underlying energetics. Simulations of the interactions of heptalysine and the hydrophobic-cationic peptide, Magainin2, with acidic membranes were used to calibrate the model. The calibrated model reproduced structural data and the membrane-association free energies that were measured also for other basic and hydrophobic-cationic peptides. Interestingly, amphipathic peptides, such as Magainin2, were found to adopt two main membrane-associated states. In the first, the peptide resided mostly outside the polar headgroups region. In the second, which was energetically more favorable, the peptide assumed an amphipathic-helix conformation, where its hydrophobic face was immersed in the hydrocarbon region of the membrane and the charged residues were in contact with the surface of smeared charges. This dual behavior provides a molecular interpretation of the available experimental data.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fenômenos Biofísicos , Biofísica , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cátions , Peptídeos Penetradores de Células , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Magaininas , Modelos Moleculares , Dados de Sequência Molecular , Método de Monte Carlo , Peptídeos/genética , Ligação Proteica , Solventes , Eletricidade Estática , Termodinâmica , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
14.
Biophys J ; 88(4): 2391-402, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15653741

RESUMO

Folding simulations of polyalanine peptides were carried out using an off-lattice Monte Carlo simulation technique. The peptide was represented as a chain of residues, each of which contains two interaction sites: one corresponding to the C(alpha) atom and the other to the side chain. A statistical potential was used to describe the interaction between these sites. The preferred conformations of the peptide chain on the energy surface, starting from several initial conditions, were searched by perturbations on its generalized coordinates with the Metropolis criterion. We observed that, at low temperatures, the effective energy was low and the helix content high. The calculated helix propagation (s) and nucleation (sigma) parameters of the Zimm-Bragg model were in reasonable agreement with the empirical data. Exploration of the energy surface of the alanine-based peptides (AAQAA)(3) and AAAAA(AAARA)(3)A demonstrated that their behavior is similar to that of polyalanine, in regard to their effective energy, helix content, and the temperature-dependence of their helicity. In contrast, stable secondary structures were not observed for (Gly)(20) at similar temperatures, which is consistent with the nonfolder nature of this peptide. The fluctuations in the slowest dynamics mode, which describe the elastic behavior of the chain, showed that as the temperature decreases, the polyalanine peptides become stiffer and retain conformations with higher helix content. Clustering of conformations during the folding phase implied that polyalanine folds into a helix through fewer numbers of intermediate conformations as the temperature decreases.


Assuntos
Biofísica/métodos , Proteínas/química , Alanina/química , Carbono/química , Análise por Conglomerados , Simulação por Computador , Cristalografia por Raios X , Bases de Dados de Proteínas , Glicina/química , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura , Termodinâmica
15.
Biophys J ; 85(6): 3431-44, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645040

RESUMO

We introduce here a novel Monte Carlo simulation method for studying the interactions of hydrophobic peptides with lipid membranes. Each of the peptide's amino acids is represented as two interaction sites: one corresponding to the backbone alpha-carbon and the other to the side chain, with the membrane represented as a hydrophobic profile. Peptide conformations and locations in the membrane and changes in the membrane width are sampled using the Metropolis criterion, taking into account the underlying energetics. Using this method we investigate the interactions between the hydrophobic peptide M2delta and a model membrane. The simulations show that starting from an extended conformation in the aqueous phase, the peptide first adsorbs onto the membrane surface, while acquiring an ordered helical structure. This is followed by formation of a helical-hairpin and insertion into the membrane. The observed path is in agreement with contemporary understanding of peptide insertion into biological membranes. Two stable orientations of membrane-associated M2delta were obtained: transmembrane (TM) and surface, and the value of the water-to-membrane transfer free energy of each of them is in agreement with calculations and measurements on similar cases. M2delta is most stable in the TM orientation, where it assumes a helical conformation with a tilt of 14 degrees between the helix principal axis and the membrane normal. The peptide conformation agrees well with the experimental data; average root-mean-square deviations of 2.1 A compared to nuclear magnetic resonance structures obtained in detergent micelles and supported lipid bilayers. The average orientation of the peptide in the membrane in the most stable configurations reported here, and in particular the value of the tilt angle, are in excellent agreement with the ones calculated using the continuum-solvent model and the ones observed in the nuclear magnetic resonance studies. This suggests that the method may be used to predict the three-dimensional structure of TM peptides.


Assuntos
Biofísica/métodos , Bicamadas Lipídicas/química , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Membrana Celular/metabolismo , Simulação por Computador , Bases de Dados como Assunto , Espectroscopia de Ressonância Magnética , Micelas , Modelos Estatísticos , Dados de Sequência Molecular , Método de Monte Carlo , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA