Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771176

RESUMO

Global waste production is significantly rising with the increase in population. Efforts are being made to utilize waste in meaningful ways and increase its economic value. This research makes one such effort by utilizing gas-to-liquid (GTL)-derived biosolids, a significant waste produced from the wastewater treatment process. To understand the surface properties, the biosolid waste (BS) that is activated directly using potassium carbonate, labelled as KBS, has been characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), and Brunauer-Emmett-Teller (BET). The characterization shows that the surface area of BS increased from 0.010 to 156 m2/g upon activation. The EDS and XPS results show an increase in the metal content after activation (especially iron); additionally, XRD revealed the presence of magnetite and potassium iron oxide upon activation. Furthermore, the magnetic field was recorded to be 0.1 mT using a tesla meter. The magnetic properties present in the activated carbon show potential for pollutant removal. Adsorption studies of methylene blue using KBS show a maximum adsorption capacity of 59.27 mg/g; the adsorption process is rapid and reaches equilibrium after 9 h. Modelling using seven different isotherm and kinetic models reveals the best fit for the Langmuir-Freundlich and Diffusion-chemisorptionmodels, respectively. Additional thermodynamic calculations conclude the adsorption system to be exothermic, spontaneous, and favoring physisorption.

2.
J Biomed Mater Res A ; 111(12): 1850-1865, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334879

RESUMO

Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.


Assuntos
Osseointegração , Titânio , Titânio/química , Porosidade , Argônio , Cloreto de Sódio , Propriedades de Superfície
3.
Sci Rep ; 13(1): 21418, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049503

RESUMO

Zinc oxide (ZnO) nanorods and ZnO nanostructures composited with silver (Ag) and multi-walled carbon nanotubes (MWCNTs) have been synthesized by a simple impregnation-calcination method and have been shown to be suitable for use as antimicrobial agents. The preparation method used for composite materials is very simple, time-effective, and can be used for large-scale production. Several analytical techniques, including X-ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transmission infrared spectroscopy (FTIR), have been used to characterize the prepared ZnO-Ag-MWCNT composite materials. The effects on structural, morphological, and antimicrobial properties of (ZnO)100-x (Ag)x nanocomposites at various weight ratios (x = 0, 5, 10, 30, and 50 wt%) have been investigated. The antimicrobial properties of ZnO composited with Ag nanoparticles and MWCNTs towards both gram-positive and gram-negative bacteria species were studied. The effect of raw MWCNTs and MWCNTs composited with ZnO and Ag on the cell morphology and chemical composition of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was studied by SEM and EDS, respectively. It was found that composite materials made of ZnO-Ag-MWCNTs exhibit greater antibacterial activities toward the microorganisms E. coli and S. aureus than ZnO-Ag, which could be beneficial for efficient antimicrobial agents in water and air treatment applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Nanotubos de Carbono , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Nanocompostos/química , Testes de Sensibilidade Microbiana
4.
Beilstein J Nanotechnol ; 11: 1608-1614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134005

RESUMO

The oxidation of Au/Ag alloy thin films using radio-frequency oxygen plasma was studied in this work. It was demonstrated that there is a phase separation occurring between silver and gold. In addition, it was shown that the preferential oxidation of silver resulted in a solid-state diffusion of silver toward the surface where it oxidized and formed nanoporous microspheres. The gold phase remaining in the film exhibited nanoporosity due to the injected vacancies at the metal/silver oxide interface. Based on the scanning transmission electron microscopy analysis coupled with energy dispersive X-ray mapping a mechanism was proposed based on solid-state diffusion and the Kirkendall effect to explain the different steps occurring during the oxidation process.

5.
ACS Biomater Sci Eng ; 5(7): 3325-3339, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405575

RESUMO

A new generation of biomaterials are evolving from being biologically inert toward bioactive surfaces, which can further interact with biological components at the nanoscale. Here, we present directed irradiation synthesis (DIS) as a novel technology to selectively apply plasma ions to bombard any type of biomaterial and tailor the nanofeatures needed for in vitro growth stimulation. In this work, we demonstrate for the first time, the influence of physiochemical cues (e.g., self-organized topography at nanoscale) of medical grade Ti6Al4V results in control of cell shape, adhesion, and proliferation of human aortic smooth muscle stem cells. The control of surface nanostructures was found to be correlated to ion-beam incidence angle linked to a surface diffusive regime during irradiation synthesis with argon ions at energies below 1 keV and a fluence of 2.5 × 1017 cm-2. Cell viability and cytoskeleton morphology were evaluated at 24 h, observing an advance cell attachment state on post-DIS surfaces. These modified surfaces showed 84% of cell biocompatibility and an increase in cytoplasmatic protusions ensuring a higher cell adhesion state. Filopodia density was promoted by a 3-fold change for oblique incidence angle DIS treatment compared to controls (e.g., no patterning) and lamellipodia structures were increased more than a factor of 2, which are indicators of cell attachment stimulation due to DIS modification. In addition, the morphology of the nanofeatures were tailored, with high fidelity control of the main DIS parameters that control diffusive and erosive regimes of self-organization. We have correlated the morphology and the influence in cell behavior, where nanoripple formation is the most active morphology for cell stimulation.

6.
Macromol Biosci ; 19(2): e1800225, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30451373

RESUMO

Surgical clipping and endovascular coiling are well recognized as conventional treatments of Penetrating Brain Injury aneurysms. These clinical approaches show partial success, but often result in thrombus formation and the rupture of aneurysm near arterial walls. The authors address these challenging brain traumas with a unique combination of a highly biocompatible biopolymer hydrogel rendered magnetic in a flexible and resilient membrane coating integrated to a scaffold stent platform at the aneurysm neck orifice, which enhances the revascularization modality. This work focuses on the in situ diagnosis of nano-mechanical behavior of bacterial nanocellulose (BNC) membranes in an aqueous environment used as tissue reconstruction substrates for cerebral aneurysmal neck defects. Nano-mechanical evaluation, performed using instrumented nano-indentation, shows with very low normal loads between 0.01 to 0.5 mN, in the presence of deionized water. Mechanical testing and characterization reveals that the nano-scale response of BNC behaves similar to blood vessel walls with a very low Young´s modulus, E (0.0025 to 0.04 GPa), and an evident creep effect (26.01 ± 3.85 nm s-1 ). These results confirm a novel multi-functional membrane using BNC and rendered magnetic with local adhesion of iron-oxide magnetic nanoparticles.


Assuntos
Revascularização Cerebral/métodos , Procedimentos Endovasculares/métodos , Hidrogéis/uso terapêutico , Aneurisma Intracraniano/cirurgia , Nanopartículas de Magnetita/uso terapêutico , Celulose/uso terapêutico , Procedimentos Endovasculares/efeitos adversos , Gluconacetobacter xylinus/metabolismo , Humanos , Aneurisma Intracraniano/fisiopatologia , Fenômenos Mecânicos , Instrumentos Cirúrgicos
7.
Acta Biomater ; 77: 172-181, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30004023

RESUMO

Tissue-engineered vascular grafts (TEVG) use biologically-active cells with or without supporting scaffolds to achieve tissue remodeling and regrowth of injured blood vessels. However, this process may take several weeks because the high hemodynamic shear stress at the damaged site causes cellular denudation and impairs tissue regrowth. We hypothesize that a material with magnetic properties can provide the force required to speed up re-endothelization at the vascular defect by facilitating high cell density coverage, especially during the first 24 h after implantation. To test our hypothesis, we designed a magnetic bacterial cellulose (MBC) to locally target cells in vitro under a pulsatile fluid flow (0.514 dynes cm-2). This strategy can potentially increase cell homing at TEVG, without the need of blood cessation. The MBC was synthesized by an in situ precipitation method of Fe3+ and Fe2+ iron salts into bacterial cellulose (BC) pellicles to form Fe3O4 nanoparticles along the BC's fibrils, followed by the application of dextran coating to protect the embedded nanoparticles from oxidation. The iron salt concentration used in the synthesis of the MBC was tuned to balance the magnetic properties and cytocompatibility of the magnetic hydrogel. Our results showed a satisfactory MBC magnetization of up to 10 emu/g, which is above the value considered relevant for tissue engineering applications (0.05 emu/g). The MBC captured magnetically-functionalized cells under dynamic flow conditions in vitro. MBC magnetic properties and cytocompatibility indicated a dependence on the initial iron oxide nanoparticle concentration. STATEMENT OF SIGNIFICANCE: Magnetic hydrogels represent a new class of functional materials with great potential in TVEG because they offer a platform to (1) release drugs on demand, (2) speed up tissue regrowth, and (3) provide mechanical cues to cells by its deformability capabilities. Here, we showed that a magnetic hydrogel, the MBC, was able to capture and retain magnetically-functionalized smooth muscle cells under pulsatile flow conditions in vitro. A magnetic hydrogel with this feature can be used to obtain high-density cell coverage on sites that are aggressive for cell survival such as the luminal face of vascular grafts, whereas simultaneously can support the formation of a biologically-active cell layer that protects the material from restenosis and inflammation.


Assuntos
Bactérias/química , Prótese Vascular , Celulose/química , Aneurisma Intracraniano/terapia , Magnetismo , Miócitos de Músculo Liso/citologia , Materiais Biocompatíveis/química , Adesão Celular , Proliferação de Células , Módulo de Elasticidade , Humanos , Hidrodinâmica , Hidrogéis/química , Aneurisma Intracraniano/cirurgia , Campos Magnéticos , Nanopartículas Metálicas/química , Resistência ao Cisalhamento , Engenharia Tecidual
8.
Macromol Biosci ; 17(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28116837

RESUMO

Current treatments for brain aneurysms are invasive, traumatic, and not suitable in most patients with increased risks. A new alternative method is using scaffold stents to create a local and focal attraction force of cells for an in situ reconstruction of the tunica media. For this purpose, a nanostructured bioactive coating is designed to render an asymmetric region of the stent scaffold magnetic and biomimetic, which utilizes bacterial nanocellulose (BNC) as a platform for both magnetic and cell attraction as well as proliferation. The magnetization of the BNC is realized through the reaction of Fe III and II, precipitating superparamagnetic iron oxide nanoparticles (SPION). Subsequently, magnetic bacterial nanocellulose (MBNC) is coated with polyethylene glycol to improve its biocompatibility. Cytotoxicity and biocompatibility are evaluated using porcine aortic smooth muscle cells. Preliminary cellular migration assays demonstrate the behavior between MBNC and cells labeled with SPION. In this work, (1) synthesis of BNC impregnated with magnetic nanoparticles is successfully demonstrated; (2) a viable, resilient, and biocompatible hydrogel membrane is tested for neuroendovascular application using a stent scaffold; (3) cell viability and minimal cytotoxicity is achieved; (4) cell migration tests and examination of cellular magnetic attraction confirm the viability of MBNC as a multifunctional coating.


Assuntos
Celulose/química , Compostos Férricos/química , Aneurisma Intracraniano/terapia , Nanopartículas de Magnetita/química , Stents , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Celulose/farmacologia , Compostos Férricos/farmacologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Aneurisma Intracraniano/fisiopatologia , Nanopartículas de Magnetita/uso terapêutico , Teste de Materiais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Polietilenoglicóis/química , Suínos
9.
J Vis Exp ; (111)2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27285589

RESUMO

In this study, bacterial nanocellulose (BNC) produced by the bacteria Gluconacetobacter xylinus is synthesized and impregnated in situ with iron oxide nanoparticles (IONP) (Fe3O4) to yield a magnetic bacterial nanocellulose (MBNC). The synthesis of MBNC is a precise and specifically designed multi-step process. Briefly, bacterial nanocellulose (BNC) pellicles are formed from preserved G. xylinus strain according to our experimental requirements of size and morphology. A solution of iron(III) chloride hexahydrate (FeCl3·6H2O) and iron(II) chloride tetrahydrate (FeCl2·4H2O) with a 2:1 molar ratio is prepared and diluted in deoxygenated high purity water. A BNC pellicle is then introduced in the vessel with the reactants. This mixture is stirred and heated at 80 °C in a silicon oil bath and ammonium hydroxide (14%) is then added by dropping to precipitate the ferrous ions into the BNC mesh. This last step allows forming in situ magnetite nanoparticles (Fe3O4) inside the bacterial nanocellulose mesh to confer magnetic properties to BNC pellicle. A toxicological assay was used to evaluate the biocompatibility of the BNC-IONP pellicle. Polyethylene glycol (PEG) was used to cover the IONPs in order to improve their biocompatibility. Scanning electron microscopy (SEM) images showed that the IONP were located preferentially in the fibril interlacing spaces of the BNC matrix, but some of them were also found along the BNC ribbons. Magnetic force microscope measurements performed on the MBNC detected the presence magnetic domains with high and weak intensity magnetic field, confirming the magnetic nature of the MBNC pellicle. Young's modulus values obtained in this work are also in a reasonable agreement with those reported for several blood vessels in previous studies.


Assuntos
Prótese Vascular , Celulose/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Aorta/citologia , Materiais Biocompatíveis/química , Celulose/biossíntese , Quebras de DNA de Cadeia Simples , Compostos Ferrosos/química , Gluconacetobacter xylinus/metabolismo , Humanos , Magnetismo/métodos , Microscopia Eletrônica de Varredura , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia
10.
Artigo em Inglês | IMSEAR | ID: sea-175690

RESUMO

Background: Beedi is also called as poor man’s cigarette. Government estimates total number of beedi workers at about 4.5 million. Women involvement in beedi rolling has been linked to the ease of learning skill, its manual operations, the fact that work can be carried out at home. Beedi rollers are exposed to unburnt tobacco dust through cutaneous and pharyngeal route. Methods: Community adopted under UHTC, Dept. of Community medicine, SDMCMS&H, Dharwad, Karnataka. All beedi rollers residing in the Community adopted under UHTC who were involved in beedi rolling since at least last 6 months and willing to participate in the study. Study duration was 2 months (April to June 2014). Preformed pretested questionnaire was used to collect data regarding sociodemographic profile, health problems and knowledge, attitude and practices towards handling of tobacco, urine cotinine test strips. Ethical clearance was obtained from Institutional ethical committee of SDMCMS&H, Dharwad. Descriptive statistics like percentages and proportions were calculated. Results: All participants in our study were females and mean age at starting beedi rolling was 15 years. Commonest reason for starting beedi rolling was to support family income. Regarding harmful effects of handling tobacco dust for rolling beedi, 5 (17%) participants replied positively, whereas remaining 24 (82.7%) participants considered it to be harmless. Washing hands after handling tobacco dust was a common practice of 19 (65.5%) participants. Conclusions: Handling tobacco dust is considered harmless by beedi rollers mainly because of ignorance which arises due to illiteracy and becomes their need to support family economically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA