Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 197: 110621, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32304924

RESUMO

Antimony (Sb) excess accumulation in edible parts of crops causes potential risks to human health. However, knowledge about the mechanisms of its accumulation within vegetable plants is still not well known. Here, we investigated the physiological processes of Sb involved in symplastic and apoplastic absorption, compartmentation by roots, and translocation in xylem in Brassica parachinensis L. exposed to antimonate (SbV) and antimonite (SbIII) forms. The results showed that plants treated with SbIII emerged to be more toxic than SbV as proved by the lower biomass and the higher concentrations of malonaldehyde (MDA) and hydrogen peroxide (H2O2) in plant tissues, especially at high dosages. The Sb concentration showed more in shoots but less in roots treated with SbV than with SbIII. The total Sb accumulation was higher under the SbV treatment than the SbIII treatment, mainly due to the higher accumulation in shoots. Additionally, the Sb concentration in symplastic flow of roots was higher exposed to SbV than SbIII, while no differences were found for the Sb concentration in apoplastic flow between them. Moreover, the Sb concentration in cell walls of roots was higher exposed to SbIII than SbV, especially at high levels. Furthermore, the Sb concentration in xylem was higher exposed to SbV than SbIII, and a greatly positive correlation was observed between the Sb concentrations in xylem and shoots. Overall, these findings revealed that vegetable plants accumulated more SbV than SbIII in edible parts mainly due to xylem translocation rather than root absorption.


Assuntos
Antimônio/farmacocinética , Brassica/metabolismo , Absorção Fisiológica , Antimônio/toxicidade , Transporte Biológico , Brassica/efeitos dos fármacos , Parede Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Raízes de Plantas/metabolismo , Xilema/metabolismo
2.
Ecotoxicol Environ Saf ; 189: 110010, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787381

RESUMO

Nitrogen (N) forms not only affect cadmium (Cd) accumulation in plants, but also affect plant resistance to Cd toxicity. However, few researches have been reported underlying the mechanism of the relationship between nitrogen forms and plant resistance under Cd exposure. Here, we explored the mechanism on how different NO3-/NH4+ ratios affect antioxidase system and the glutathione-ascorbate cycle under five different ratios of NO3-/NH4+ (1:0, 2:1, 1:1, 1:2, 0:1) and three dosages of Cd exposure (0, 1, 5 µmol L-1 Cd) in rice (Oryza sativa L.). The results showed that high NO3- and high Cd exposure both significantly inhibited tissue growth of rice plants, and this inhibiting trend was mitigated with increasing NH4+ ratios as proved by the increased biomass and the decreased concentrations of malonaldehyde (MDA) and hydrogen peroxide (H2O2), as well as the levels of Cd contents in rice tissues. Additionally, high NH4+ ratios elevated the SOD activities in rice tissues, especially at high Cd treatment. However, other two antioxidases (CAT and APX) were insensitive to changes of NO3-/NH4+ ratios (except the full NO3-). Furthermore, high NH4+ ratios induced increasing of the efficiency of glutathione-ascorbate cycle (GSH-AsA) under two levels of Cd exposure, as evidenced by increasing concentrations of GSH and AsA and the activities of GR and DHAR in rice tissues. Overall, these results revealed that ammonium nutrition caused an enhancement resistance to Cd stress in rice plants was responsible for increasing of partial antioxidase system and the efficiencies of GSH-AsA cycle.


Assuntos
Compostos de Amônio/farmacologia , Ácido Ascórbico/metabolismo , Cádmio/toxicidade , Glutationa/metabolismo , Oryza/metabolismo , Compostos de Amônio/análise , Cádmio/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Nitratos/análise , Nitratos/farmacologia , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo
3.
Ecotoxicol Environ Saf ; 166: 157-164, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30267988

RESUMO

Silicon (Si) and selenium (Se) are beneficial for many higher plants when grown on stress conditions. However, the mechanisms underlying the differential effects between foliar Si and Se in alleviation of plant toxicity exposed to cadmium (Cd) stress are remained unclear. In this study, we investigated the discrepant mechanisms of foliar Si and Se on Cd absorption and compartmentation by roots, its translocation in xylem, and the antioxidant system within Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) under low and high Cd stress. Results showed that plant growth was significantly enhanced by foliar additions of Si or/and Se according to an increased plant tissue biomass at high Cd exposure. In addition, the foliar coupled addition of Si and Se showed little effects on the concentrations of Si or Se in plant tissues in comparison with the single addition of foliar Si or Se respectively. The foliar Si alone or combined with Se markedly reduced the Cd concentrations in plant shoots under two Cd treatments. This might be explained by the lower Cd concentrations in symplast and apoplast and the higher Cd concentrations in cell walls of plant roots, and the lower Cd concentrations in xylem sap. However, no great changes in these values were observed under the treatments of foliar Se alone. Moreover, the foliar additions of Si or/and Se all increased the antioxidant enzyme activities of SOD, CAT and APX in plant tissues, especially at high Cd dosage. No significant differences in the increasing degrees of these three antioxidant enzymes were found between the foliar Si and Se treatments. However, only the foliar Se alone or combined with Si markedly promoted the antioxidant enzyme activities of GR and DHAR in plant tissues. Our findings demonstrate that the alleviation of Cd toxicity by foliar Si maybe mainly responsible for inhibition of Cd absorption and its translocation to plant shoots, reinforcing its compartmentation into root cell walls, whilst enhancing the antioxidant enzyme system may be employed by foliar Se.


Assuntos
Brassica/metabolismo , Cádmio/farmacocinética , Selênio/farmacologia , Silício/farmacologia , Absorção Fisiológica , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Brassica/enzimologia , Brassica/crescimento & desenvolvimento , Parede Celular/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
4.
Ecotoxicol Environ Saf ; 114: 179-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25638524

RESUMO

The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.


Assuntos
Brassica/efeitos dos fármacos , Cromo/toxicidade , Poluentes Ambientais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Antioxidantes/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Brassica/ultraestrutura , Relação Dose-Resposta a Droga , Peróxidos Lipídicos/metabolismo , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
5.
Chemosphere ; 303(Pt 2): 134663, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35447204

RESUMO

Low molybdenum (Mo) bioavailability in acidic soil obstructs vegetable nitrogen assimilation and thus increases the health risk of vegetable ingestion due to nitrate accumulation. Constantly providing available Mo in acidic soil is a challenge for decreasing nitrate accumulation in vegetables. In this study, three Mo application methods, including biochar-based Mo slow-release fertilizer (Mo-biochar), seed dressing, and basal application, were investigated to enhance Mo bioavailability in acidic soil and nitrogen assimilation in Chinese flowering cabbage (Brassica parachinensis). The results showed that Mo-biochar constantly and sufficiently supplied Mo nutrients throughout the growing period of Brassica parachinensis, as evidenced by the soil available Mo, plant Mo uptake, and Mo values. The improved Mo supply was attributed to the alleviation of acidic soil (pH from 5.10 to 6.99) and the slow release of Mo adsorbed on biochar. Mo-biochar increased the nitrate reductase (NR) activity by 238.6% and glutamate dehydrogenase activity by 27.5%, indicating an enhancement of the rate-limiting steps of nitrogen assimilation, especially for nitrate reduction and amino acid synthesis. The increase in Mo-containing NR could be directly ascribed to the high level of Mo in Brassica parachinensis. Compared with the control, the nitrate content of Brassica parachinensis decreased by 42.9% due to the nitrate reduction induced by increased NR. Additionally, Mo-biochar was beneficial to vegetable growth and quality. In contrast, the transformation from NO3- to NH4+ was blocked with Mo seed dressing and basal application because of low Mo bioavailability in the soil, resulting in a high nitrate content in Brassica parachinensis. Conclusively, Mo-biochar can slowly release Mo and improve the neutral environment for Mo bioavailability, which is an effective strategy to mitigate the high nitrate accumulation of vegetables planted in acidic soil.


Assuntos
Brassica , Fertilizantes , Brassica/metabolismo , Carvão Vegetal , China , Fertilizantes/análise , Molibdênio/farmacologia , Nitratos/metabolismo , Nitrogênio/análise , Solo/química
6.
Environ Sci Pollut Res Int ; 25(11): 10771-10781, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29396824

RESUMO

Copper contamination of soils is a global environmental problem. Soil components (organic matter, clay minerals, and microorganisms) and retention time can govern the adsorption, fixation, and distribution of copper. This study evaluated the interaction effects of soil components and aging on the distribution of exogenous copper. Three typical Chinese soils (Ultisol, Alfisol, and Histosol) were collected from Hunan, Henan, and Heilongjiang Provinces. Soils were incubated with rice straw (RS) and engineered bacteria (Pseudomonas putida X4/pIME) in the presence of exogenous copper for 12 months. Sequential extraction was employed to obtain the distribution of Cu species in soils, and the mobility factors of Cu were calculated. The relationships between soil properties and Cu fractions were analyzed with stepwise multiple linear regression. The results show that organic carbon plays a more important role in shaping the distribution of relatively mobile Cu, and iron oxides can be more critical in stabilizing Cu species in soils. Our results suggest that organic matter is the most important factor influencing copper partitioning in Ultisols, while iron oxides are more significant in Alfisols. The mobility of exogenous Cu in soils depends largely on organic carbon, amorphous Fe, and aging. The introduction of both rice straw and rice straw + engineered bacteria enhanced the stabilization of Cu in all the three soils during aging process. The introduction of bacteria could reduce copper mobility, which was indicated by the lowest mobility factors of Cu for the treatment with bacteria in Black, Red, and Cinnamon soils at the first 4, 8, and 8 months, respectively. Different measures should be taken into account regarding the content of organic matter and iron oxides depending on soil types for the risk assessment and remediation of Cu-contaminated soils.


Assuntos
Cobre/química , Poluentes do Solo/química , Solo/química , Adsorção , China , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA