Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 148(3): 507-511, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594781

RESUMO

Here, hydrophilic carbon dots (H-CDs) are prepared by a facile room temperature method. The strength of hydrogen bonds can be controlled by introducing proton and aprotic solvents, respectively, so as to realize the tunable aggregation state of H-CDs. Because of the ultrasensitive response to dimethyl sulfoxide (DMSO), H-CDs can serve as optical probes for detecting DMSO in a linear range of 0.005% to 0.75% and with a detection limit of 0.001%.

2.
Anal Chem ; 94(6): 2882-2890, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35112843

RESUMO

The endoplasmic reticulum (ER) is crucial for the regulation of multiple cellular processes, such as cellular responses to stress and protein synthesis, folding, and posttranslational modification. Nevertheless, monitoring ER physiological activity remains challenging due to the lack of powerful detection methods. Herein, we built a two-stage cascade recognition process to achieve dynamic visualization of ER stress in living cells based on a fluorescent carbon dot (CD) probe, which is synthesized by a facile one-pot hydrothermal method without additional modification. The fluorescent CD probe enables two-stage cascade ER recognition by first accumulating in the ER as the positively charged and lipophilic surface of the CD probe allows its fast crossing of multiple membrane barriers. Next, the CD probe can specifically anchor on the ER membrane via recognition between boronic acids and o-dihydroxy groups of mannose in the ER lumen. The two-stage cascade recognition process significantly increases the ER affinity of the CD probe, thus allowing the following evaluation of ER stress by tracking autophagy-induced mannose transfer from the ER to the cytoplasm. Thus, the boronic acid-functionalized cationic CD probe represents an attractive tool for targeted ER imaging and dynamic tracking of ER stress in living cells.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Autofagia , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA