Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 609(7927): 479-484, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104555

RESUMO

Studying strong electron correlations has been an essential driving force for pushing the frontiers of condensed matter physics. In particular, in the vicinity of correlation-driven quantum phase transitions (QPTs), quantum critical fluctuations of multiple degrees of freedom facilitate exotic many-body states and quantum critical behaviours beyond Landau's framework1. Recently, moiré heterostructures of van der Waals materials have been demonstrated as highly tunable quantum platforms for exploring fascinating, strongly correlated quantum physics2-22. Here we report the observation of tunable quantum criticalities in an experimental simulator of the extended Hubbard model with spin-valley isospins arising in chiral-stacked twisted double bilayer graphene (cTDBG). Scaling analysis shows a quantum two-stage criticality manifesting two distinct quantum critical points as the generalized Wigner crystal transits to a Fermi liquid by varying the displacement field, suggesting the emergence of a critical intermediate phase. The quantum two-stage criticality evolves into a quantum pseudo criticality as a high parallel magnetic field is applied. In such a pseudo criticality, we find that the quantum critical scaling is only valid above a critical temperature, indicating a weak first-order QPT therein. Our results demonstrate a highly tunable solid-state simulator with intricate interplay of multiple degrees of freedom for exploring exotic quantum critical states and behaviours.

2.
Blood ; 144(6): 657-671, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38635773

RESUMO

ABSTRACT: Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. Here, we investigated the role of transfer RNA (tRNA) pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By using patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic pseudouridine synthase 1 (PUS1) mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA-iPSCs and anemia in the MLASA mouse model. Both MLASA-iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels because of pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mammalian target of rapamycin (mTOR) inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment partially ameliorated anemia phenotypes in a patient with MLASA. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for patients with anemia facing challenges related to protein translation.


Assuntos
Eritropoese , Células-Tronco Pluripotentes Induzidas , Mitocôndrias , RNA de Transferência , Animais , Camundongos , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pseudouridina/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Hidroliases/metabolismo , Hidroliases/genética , Síndrome MELAS/genética , Síndrome MELAS/patologia , Síndrome MELAS/metabolismo , Modelos Animais de Doenças
3.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
4.
Circ Res ; 135(8): 806-821, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39229723

RESUMO

BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.


Assuntos
Cardiomegalia , Animais , Humanos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Camundongos , Masculino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos Transgênicos , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Células HEK293
5.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39060175

RESUMO

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.


Assuntos
Calmodulina , RNA Helicases DEAD-box , Hipocampo , RNA Ribossômico , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Animais , RNA Ribossômico/metabolismo , Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Humanos , Neurônios/metabolismo , Ratos , Nucléolo Celular/metabolismo , Células Cultivadas , Células HEK293 , Camundongos , Cálcio/metabolismo
6.
Nat Mater ; 23(10): 1363-1369, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38664497

RESUMO

In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.

7.
Nano Lett ; 24(13): 4044-4053, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517749

RESUMO

Fungal keratitis (FK) is an infectious eye disease that poses a significant risk of blindness. However, the effectiveness of conventional antifungal drugs is limited due to the intrinsic ocular barrier that impedes drug absorption. There is an urgent need to develop new therapeutic strategies to effectively combat FK. Herein, we synthesized an ultrasmall positively charged carbon dot using a simple stage-melting method. The carbon dot can penetrate the corneal barrier by opening the tight junctions, allowing them to reach the lesion site and effectively kill the fungi. The results both in vitro and in vivo demonstrated that it exhibited good biocompatibility and antifungal activity, significantly improving the therapeutic effect in a mouse model of FK. Therefore, this biophilic ultrasmall size and positive carbon dot, characterized by its ability to penetrate the corneal barrier and its antifungal properties, may offer valuable insights into the design of effective ocular nanomedicines.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Úlcera da Córnea/tratamento farmacológico , Úlcera da Córnea/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Córnea/microbiologia
8.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37982545

RESUMO

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

9.
J Am Chem Soc ; 146(28): 19286-19294, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38956888

RESUMO

As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.

10.
Lab Invest ; 104(8): 102094, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38871058

RESUMO

Accurate assessment of epidermal growth factor receptor (EGFR) mutation status and subtype is critical for the treatment of non-small cell lung cancer patients. Conventional molecular testing methods for detecting EGFR mutations have limitations. In this study, an artificial intelligence-powered deep learning framework was developed for the weakly supervised prediction of EGFR mutations in non-small cell lung cancer from hematoxylin and eosin-stained histopathology whole-slide images. The study cohort was partitioned into training and validation subsets. Foreground regions containing tumor tissue were extracted from whole-slide images. A convolutional neural network employing a contrastive learning paradigm was implemented to extract patch-level morphologic features. These features were aggregated using a vision transformer-based model to predict EGFR mutation status and classify patient cases. The established prediction model was validated on unseen data sets. In internal validation with a cohort from the University of Science and Technology of China (n = 172), the model achieved patient-level areas under the receiver-operating characteristic curve (AUCs) of 0.927 and 0.907, sensitivities of 81.6% and 83.3%, and specificities of 93.0% and 92.3%, for surgical resection and biopsy specimens, respectively, in EGFR mutation subtype prediction. External validation with cohorts from the Second Affiliated Hospital of Anhui Medical University and the First Affiliated Hospital of Wannan Medical College (n = 193) yielded patient-level AUCs of 0.849 and 0.867, sensitivities of 79.2% and 80.7%, and specificities of 91.7% and 90.7% for surgical and biopsy specimens, respectively. Further validation with The Cancer Genome Atlas data set (n = 81) showed an AUC of 0.861, a sensitivity of 84.6%, and a specificity of 90.5%. Deep learning solutions demonstrate potential advantages for automated, noninvasive, fast, cost-effective, and accurate inference of EGFR alterations from histomorphology. Integration of such artificial intelligence frameworks into routine digital pathology workflows could augment existing molecular testing pipelines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Receptores ErbB , Hematoxilina , Neoplasias Pulmonares , Mutação , Humanos , Receptores ErbB/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Amarelo de Eosina-(YS) , Feminino , Masculino , Pessoa de Meia-Idade , Idoso
11.
Mol Cancer ; 23(1): 213, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342168

RESUMO

The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.


Assuntos
Ferroptose , Imunoterapia , Neoplasias , Ferroptose/genética , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Imunoterapia/métodos , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação Neoplásica da Expressão Gênica , Processamento Pós-Transcricional do RNA , Metilação de RNA
12.
Anal Chem ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250834

RESUMO

Current loop-mediated isothermal amplification (LAMP)-coupled clustered regularly interspaced short palindromic repeats (LAMP-CRISPR) biosensing in two-step or one-step formats has been applied to next-generation accurate molecular diagnosis. However, two-step LAMP-CRISPR assays intrinsically confront aerosol contamination, while one-step assays possess a compromised detection performance. To this end, we propose an enhanced two-step LAMP-CRISPR assay (ETL-CRISPR) with an engineered Zst polymerase to mediate ultrasensitive DNA detection and thoroughly eliminate aerosol contamination. Instead of supplementing any dTTP, the newly engineered Zst polymerase can efficiently polymerize four oligonucleotides (dATP, dCTP, dGTP, and dUTP), thereby enabling contamination-free and ultrasensitive ETL-CRISPR assay. By targeting the L1 gene of human papillomaviruses (HPV) 16 and the E7 gene of HPV18, our ETL-CRISPR assay achieves high specificity and single-copy level sensitivity within 1 h. Furthermore, we validated the assay by using 85 HPV clinical swab samples with an accuracy of 98.8%, which is comparable to the real-time quantitative polymerase chain reaction. Therefore, ETL-CRISPR provides a straightforward strategy for the contamination-free and ultrasensitive point-of-care diagnosis of clinical pathogens.

13.
Anal Chem ; 96(17): 6784-6793, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632870

RESUMO

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Assuntos
Antígenos de Superfície da Hepatite B , Análise Espectral Raman , Antígenos de Superfície da Hepatite B/sangue , Análise Espectral Raman/métodos , Humanos , Vírus da Hepatite B/isolamento & purificação , Nanopartículas Metálicas/química , Hepatite B/sangue , Hepatite B/diagnóstico , Propriedades de Superfície , Limite de Detecção
14.
Genome Res ; 31(4): 622-634, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33722936

RESUMO

Heterosis or hybrid vigor is a common phenomenon in plants and animals; however, the molecular mechanisms underlying heterosis remain elusive, despite extensive studies on the phenomenon for more than a century. Here we constructed a large collection of F1 hybrids of Saccharomyces cerevisiae by spore-to-spore mating between homozygous wild strains of the species with different genetic distances and compared growth performance of the F1 hybrids with their parents. We found that heterosis was prevalent in the F1 hybrids at 40°C. A hump-shaped relationship between heterosis and parental genetic distance was observed. We then analyzed transcriptomes of selected heterotic and depressed F1 hybrids and their parents growing at 40°C and found that genes associated with one-carbon metabolism and related pathways were generally up-regulated in the heterotic F1 hybrids, leading to improved cellular redox homeostasis at high temperature. Consistently, genes related with DNA repair, stress responses, and ion homeostasis were generally down-regulated in the heterotic F1 hybrids. Furthermore, genes associated with protein quality control systems were also generally down-regulated in the heterotic F1 hybrids, suggesting a lower level of protein turnover and thus higher energy use efficiency in these strains. In contrast, the depressed F1 hybrids, which were limited in number and mostly shared a common aneuploid parental strain, showed a largely opposite gene expression pattern to the heterotic F1 hybrids. We provide new insights into molecular mechanisms underlying heterosis and thermotolerance of yeast and new clues for a better understanding of the molecular basis of heterosis in plants and animals.


Assuntos
Carbono/metabolismo , Homeostase , Temperatura Alta , Vigor Híbrido , Saccharomyces cerevisiae , Homeostase/genética , Vigor Híbrido/genética , Hibridização Genética , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação para Cima
15.
Small ; 20(32): e2312135, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38501794

RESUMO

Carbon fiber (CF) is a potential microwave absorption (MA) material due to the strong dielectric loss. Nevertheless, owing to the high conductivity, poor impedance matching of carbon-based  materials results in limited MA performance. How to solve this problem and achieve excellent MA performance remains a principal challenge. Herein, taking full advantage of CF and excellent impedance matching of bimetallic metal-organic frameworks (MOF) derivatives layer, an excellent microwave absorber based on micron-scale 1D CF and NiCoMOF (CF@NiCoMOF-800) is developed. After adjusting the oxygen vacancies of the bimetallic MOF, the resultant microwave absorber presented excellent MA properties including the minimum reflection loss (RLmin) of -80.63 dB and wide effective absorption bandwidth (EAB) of 8.01 GHz when its mass percent is only 5 wt.% and the thickness is 2.59 mm. Simultaneously, the mechanical properties of the epoxy resin (EP)-based coating with this microwave absorber are effectively improved. The hardness (H), elastic modulus (E), bending strength, and compressive strength of CF@NiCoMOF-800/EP coating are 334 MPa, 5.56 GPa, 82.2 MPa, and 135.8 MPa, which is 38%, 15%, 106% and 53% higher than EP coating. This work provides a promising solution for carbon materials achieving excellent MA properties and mechanical properties.

16.
Plant Cell Environ ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248638

RESUMO

Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.

17.
Chemistry ; 30(44): e202401293, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38828487

RESUMO

Herein, we report a general copper-catalyzed method for the tunable oxygenative rearrangement of tetrahydrocarbazoles to cyclopentyl-bearing spiroindolin-2-ones and spiroindolin-3-ones. The method demonstrates excellent chemoselectivity, regioselectivity, and product control simply by using the H2O and O2 as oxygen source, respectively. This open-flask method is safe and simple to operate, and no other chemical oxidants are required. Besides, inspired from the unique pathway of 1, 2-migration rearrangement, a highly controllable hydroxylation of indoles for the construction of C3a-hydroxyl iminium indolines was also developed. Mechanistic experiments suggest that a single-electron transfer-induced oxidation process is responsible for the tunable selectivity control.

18.
Gastrointest Endosc ; 99(5): 667-675.e1, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184117

RESUMO

BACKGROUND AND AIMS: The aim of this study was to determine if utilization of artificial intelligence (AI) in the course of endoscopic procedures can significantly diminish both the adenoma miss rate (AMR) and the polyp miss rate (PMR) compared with standard endoscopy. METHODS: We performed an extensive search of various databases, encompassing PubMed, Embase, Cochrane Library, Web of Science, and Scopus, until June 2023. The search terms used were artificial intelligence, machine learning, deep learning, transfer machine learning, computer-assisted diagnosis, convolutional neural networks, gastrointestinal (GI) endoscopy, endoscopic image analysis, polyp, adenoma, and neoplasms. The main study aim was to explore the impact of AI on the AMR, PMR, and sessile serrated lesion miss rate. RESULTS: A total of 7 randomized controlled trials were included in this meta-analysis. Pooled AMR was markedly lower in the AI group versus the non-AI group (pooled relative risk [RR], .46; 95% confidence interval [CI], .36-.59; P < .001). PMR was also reduced in the AI group in contrast with the non-AI control (pooled RR, .43; 95% CI, .27-.69; P < .001). The results showed that AI decreased the miss rate of sessile serrated lesions (pooled RR, .43; 95% CI, .20 to .92; P < .05) and diminutive adenomas (pooled RR, .49; 95% CI, .26-.93) during endoscopy, but no significant effect was observed for advanced adenomas (pooled RR, .48; 95% CI, .17-1.37; P = .17). The average number of polyps (Hedges' g = -.486; 95% CI, -.697 to -.274; P = .000) and adenomas (Hedges' g = -.312; 95% CI, -.551 to -.074; P = .01) detected during the second procedure also favored AI. However, AI implementation did not lead to a prolonged withdrawal time (P > .05). CONCLUSIONS: This meta-analysis suggests that AI technology leads to significant reduction of miss rates for GI adenomas, polyps, and sessile serrated lesions during endoscopic surveillance. These results underscore the potential of AI to improve the accuracy and efficiency of GI endoscopic procedures.

19.
Langmuir ; 40(22): 11491-11503, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38770578

RESUMO

Foam flooding is an important tool for reservoir development. This study aims to further investigate the interaction between stimulus-responsive wormlike micelle (WLM)-CO2 foams and crude oil. We performed micromorphology experiments as our major studies and used molecular dynamics simulations as an auxiliary tool for interfacial analysis. We utilized foam generation, liquid separation, and defoaming as the entry points of experimental research and energy as the quantitative assessment index to investigate the dynamic process of the action of different oil contents and oil phase types in a DOAPA@NaSal-H+ foam system. We also examined the role of NaSal in the generation and development of the foam system. Results indicated that the law of crude oil's effect on foam could be summarized as "low contents are beneficial and high contents are harmful." In addition, although the DOAPA@NaSal-H+ foam system has high compatibility for saturated and aromatic hydrocarbons, it is highly suitable for application in reservoir environments with relatively high asphaltene and resin contents. Through combined experimental and simulation approaches, we clarified the law governing the stability of the DOAPA@NaSal-H+ foam system in different oil-containing environments, identified the key role of NaSal, and provided a reference for the targeted application of the DOAPA@NaSal-H+ foam system in different oil reservoirs.

20.
Org Biomol Chem ; 22(4): 741-744, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38170630

RESUMO

An unexpected isomerization of azomethine ylides generated in situ from isatin with indoline-2-carboxylic acid has been disclosed, providing direct access to N-functionalized indole scaffolds. This protocol has good functional group tolerance and provides various 3-(1H-indol-1-yl)indolin-2-one derivatives in moderate to high yields simply by using alcohol as the solvent, with no additional additive being required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA