Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncology ; 102(3): 260-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37699367

RESUMO

INTRODUCTION: Renal cell carcinoma (RCC) is the ninth most common cancer worldwide, with clear cell RCC (ccRCC) being the most frequent histological subtype. The tumor immune microenvironment (TIME) of ccRCC is an important factor to guide treatment, but current assessments are tissue-based, which can be time-consuming and resource-intensive. In this study, we used radiomics extracted from clinically performed computed tomography (CT) as a noninvasive surrogate for CD68 tumor-associated macrophages (TAMs), a significant component of ccRCC TIME. METHODS: TAM population was measured by CD68+/PanCK+ ratio and tumor-TAM clustering was measured by normalized K function calculated from multiplex immunofluorescence (mIF). A total of 1,076 regions on mIF slides from 78 patients were included. Radiomic features were extracted from multiphase CT of the ccRCC tumor. Statistical machine learning models, including random forest, Adaptive Boosting, and ElasticNet, were used to predict TAM population and tumor-TAM clustering. RESULTS: The best models achieved an area under the ROC curve of 0.81 (95% CI: [0.69, 0.92]) for TAM population and 0.77 (95% CI: [0.66, 0.88]) for tumor-TAM clustering, respectively. CONCLUSION: Our study demonstrates the potential of using CT radiomics-derived imaging markers as a surrogate for assessment of TAM in ccRCC for real-time treatment response monitoring and patient selection for targeted therapies and immunotherapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Macrófagos Associados a Tumor/patologia , Radiômica , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral
2.
ArXiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38529078

RESUMO

The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate. CT is routinely used to measure the size of lesions in the bones. However, they can be difficult to spot due to the wide variations in their sizes, shapes, and appearances. Precise localization of such lesions would enable reliable tracking of interval changes (growth, shrinkage, or unchanged status). To that end, an automated technique to detect bone lesions is highly desirable. In this pilot work, we developed a pipeline to detect bone lesions (lytic, blastic, and mixed) in CT volumes via a proxy segmentation task. First, we used the bone lesions that were prospectively marked by radiologists in a few 2D slices of CT volumes and converted them into weak 3D segmentation masks. Then, we trained a 3D full-resolution nnUNet model using these weak 3D annotations to segment the lesions and thereby detected them. Our automated method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data. To the best of our knowledge, we are the first to attempt the direct detection of bone lesions in CT via a proxy segmentation task.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38974478

RESUMO

The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate. CT is routinely used to measure the size of lesions in the bones. However, they can be difficult to spot due to the wide variations in their sizes, shapes, and appearances. Precise localization of such lesions would enable reliable tracking of interval changes (growth, shrinkage, or unchanged status). To that end, an automated technique to detect bone lesions is highly desirable. In this pilot work, we developed a pipeline to detect bone lesions (lytic, blastic, and mixed) in CT volumes via a proxy segmentation task. First, we used the bone lesions that were prospectively marked by radiologists in a few 2D slices of CT volumes and converted them into weak 3D segmentation masks. Then, we trained a 3D full-resolution nnUNet model using these weak 3D annotations to segment the lesions and thereby detected them. Our automated method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data. To the best of our knowledge, we are the first to attempt the direct detection of bone lesions in CT via a proxy segmentation task.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA