RESUMO
We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S(175)(AGC)-->R(175)(CGC) and A(208)(GCC)-->D(208)(GAC)). The R(175) variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D(208) variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to IkappaB kinase epsilon stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D(208) variant may provide clues to elucidate the etiology of primary lung cancer.
Assuntos
Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Feminino , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Transporte Proteico/efeitos da radiação , Raios XRESUMO
BACKGROUND: Influenza A viruses have an envelope made of a lipid bilayer and two surface glycoproteins, the hemagglutinin and the neuraminidase. The structure of the virus is directly dependent on the genetic makeup of the viral genome except the glycosylation moieties and the composition of the lipid bilayer. They both depend on the host cell and are in direct contact with the environment, such as air or water. Virus survival is important for virus transmission from contaminated waters in the case of wild aquatic birds or from contaminated surface or air for humans. OBJECTIVE: The objective of this study was to check whether the origin species of the host cell has an influence on influenza A virus survival. METHOD: The persistence in water at 35°C of viruses grown on either mammalian cells or avian cells and belonging to two different subtypes H1N1 and H5N1 was compared. RESULTS: Both H5N1 and H1N1 viruses remained infectious for periods of time as long as 19-25 days, respectively. However, within the same subtype, viruses grown on mammalian cells were more stable in water at 35°C than their counterparts grown on avian cells, even for viruses sharing the same genetic background. CONCLUSIONS: This difference in virus stability outside the host is probably connected to the nature of the lipid bilayer taken from the cell or to the carbohydrate side chains of the virus surface glycoproteins. Moreover, the long-lasting survival time might have a critical role in the ecology of influenza viruses, especially for avian viruses.
Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Viabilidade Microbiana , Microbiologia da Água , Animais , Aves , Linhagem Celular , Cães , Fatores de TempoRESUMO
Development of an effective low-cost anti-acquired immunodeficiency syndrome (AIDS) drugs is needed for treatment of AIDS patients in developing countries. Host cell lipid raft microdomains, which are enriched with cholesterol, glycolipids, ceramide, and gangliosides, are important for human immunodeficiency virus type 1 (HIV-1) entry. Retinoid analogs have been shown to modulate ceramide levels in the cell membrane, while cholera toxin B subunit (CT-B) specifically binds to the ganglioside GM1. In this study, we found that the acyclic retinoid analogs geranylgeranoic acid (GGA) and NIK-333 as well as CT-B efficiently attenuate CXCR4-tropic, but not CCR5-tropic, HIV-1 vector infection. We also found that GGA and NIK-333 suppress CXCR4-tropic HIV-1 infection by attenuating CXCR4 expression. CT-B also attenuated CXCR4-tropic HIV-1 infection, but did not suppress CXCR4 expression. These results suggest a distinct role for lipid raft microdomains in CXCR4- and CCR5-tropic HIV-1 infections and illuminate novel agents for the development of AIDS therapy.
Assuntos
Fármacos Anti-HIV/metabolismo , Toxina da Cólera/metabolismo , HIV-1/efeitos dos fármacos , Receptores CXCR4/metabolismo , Tretinoína/análogos & derivados , Tropismo Viral , Internalização do Vírus/efeitos dos fármacos , Diterpenos/metabolismo , HIV-1/fisiologia , Humanos , Receptores de HIV/metabolismo , Retinoides/metabolismo , Tretinoína/metabolismoRESUMO
Several cell stresses induce nuclear factor-kappaB (NF-κB) activation, which include irradiation, oxidation, and UV. Interestingly, serum-starving stress-induced NF-κB activation in COS cells, but not in COS-A717 cells. COS-A717 is a mutant cell line of COS cells that is defective of the NF-κB signaling pathway. We isolated genes with compensating activity for the NF-κB pathway and one gene encoded the G protein ß2 (Gß2). Gß2 is one of the G protein-coupled receptor signaling effectors. In COS-A717 cells, Gß2 expression is significantly reduced. In Gß2 cDNA-transfected COS-A717 cells, the NF-κB activity was increased along with the recovery of Gß2 expression. Furthermore, serum-starving stress induced the NF-κB activity in Gß2-transfected COS-A717 cells. Consistently, the serum-starved COS cells with siRNA-reduced Gß2 protein expression showed decreased NF-κB activity. These results indicate that Gß2 is required for starvation-induced NF-κB activation and constitutive NF-κB activity. We propose that serum contains some molecule(s) that strongly inhibits NF-κB activation mediated through Gß2 signaling.