Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0236298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701996

RESUMO

Degeneration of the retinal pigment epithelium (RPE) plays a central role in age-related macular degeneration (AMD). Throughout life, RPE cells are challenged by a variety of cytotoxic stressors, some of which are cumulative with age and may ultimately contribute to drusen and lipofuscin accumulation. Stressors such as these continually damage RPE cells resulting in a state of chronic wounding. Current cell-based platforms that model a state of chronic RPE cell wounding are limited, and the RPE cellular response is not entirely understood. Here, we used the electric cell-substrate impedance sensing (ECIS) system to induce a state of acute or chronic wounding on differentiated human fetal RPE cells to analyze changes in the wound repair response. RPE cells surrounding the lesioned area employ both cell migration and proliferation to repair wounds but fail to reestablish their original cell morphology or density after repetitive wounding. Chronically wounded RPE cells develop phenotypic AMD characteristics such as loss of cuboidal morphology, enlarged size, and multinucleation. Transcriptomic analysis suggests a systemic misregulation of RPE cell functions in bystander cells, which are not directly adjacent to the wound. Genes associated with the major RPE cell functions (LRAT, MITF, RDH11) significantly downregulate after wounding, in addition to differential expression of genes associated with the cell cycle (CDK1, CDC6, CDC20), inflammation (IL-18, CCL2), and apoptosis (FAS). Interestingly, repetitive wounding resulted in prolonged misregulation of genes, including FAS, LRAT, and PEDF. The use of ECIS to induce wounding resulted in an over-representation of AMD-associated genes among those dysregulated genes, particularly genes associated with advanced AMD. This simple system provides a new model for further investigation of RPE cell wound response in AMD pathogenesis.


Assuntos
Degeneração Macular/patologia , Modelos Biológicos , Doença Aguda , Efeito Espectador , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Doença Crônica , Feto/patologia , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Cinética , Degeneração Macular/genética , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/patologia , Transcriptoma/genética , Cicatrização
2.
Invest Ophthalmol Vis Sci ; 58(1): 430-441, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28118667

RESUMO

Purpose: Transforming growth factor ß-mediated epithelial-to-mesenchymal transition (EMT) is a major component of the wound healing response and a negative determinant of retinal pigment epithelium (RPE) differentiation. We have shown previously that inhibition of TGFß signaling restored the capacity of mesenchymal RPE to differentiate; however, the potential lessens with extensive passaging. We investigated TGFß-independent mechanisms that regulate RPE differentiation following repetitive passaging. Methods: Retinal pigment epithelium-EMT was induced by repetitive passaging of fetal RPE at subconfluence. Suppression of EMT was achieved by the addition of A-83-01, a TGFß receptor kinase inhibitor. Transcriptomic analysis was used to identify potential TGFß independent processes that prevent differentiation after extensive passage. Downregulated transcription factors were identified and transduced into highly passaged RPE to restore cell differentiation. Restoration was evaluated according to morphology, expression of RPE/mesenchymal markers, transcriptomic analysis, cell doubling time, and senescence-associated ß-galactosidase (SA-ß-gal) activity. Results: A-83-01-treated RPE failed to differentiate after 7 passages (P7). This failure was concomitant with downregulation of RPE genes, misregulation of cell cycle genes, a decline in proliferative potential, and cell senescence. Exogenous expression of MYCN and OTX2 in conjunction with A-83-01 restored P7-RPE differentiation to a status similar to minimally passaged RPE. Moreover, the treatment allowed cells to maintain their differentiation capacity after extended passaging. Conclusions: Retinal pigment epithelium subjected to chronic wound stimulus undergoes TGFß-mediated EMT, loss of expression of signature RPE genes, and senescence. Targeting these aspects with a TGFß receptor kinase inhibitor, a RPE transcription factor, and a cell cycle regulator restores the capacity of highly passaged RPE cells to regenerate and differentiate.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular , Movimento Celular , Células Cultivadas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta2/farmacologia
3.
Genome Med ; 7(1): 58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26150894

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a leading cause of blindness. Most vision loss occurs following the transition from a disease of deposit formation and inflammation to a disease of neovascular fibrosis and/or cell death. Here, we investigate how repeated wound stimulus leads to seminal changes in gene expression and the onset of a perpetual state of stimulus-independent wound response in retinal pigmented epithelial (RPE) cells, a cell-type central to the etiology of AMD. METHODS: Transcriptome wide expression profiles of human fetal RPE cell cultures as a function of passage and time post-plating were determined using Agilent 44 K whole genome microarrays and RNA-Seq. Using a systems level analysis, differentially expressed genes and pathways of interest were identified and their role in the establishment of a persistent mesenchymal state was assessed using pharmacological-based experiments. RESULTS: Using a human fetal RPE cell culture model that considers monolayer disruption and subconfluent culture as a proxy for wound stimulus, we show that prolonged wound stimulus leads to terminal acquisition of a mesenchymal phenotype post-confluence and altered expression of more than 40 % of the transcriptome. In contrast, at subconfluence fewer than 5 % of expressed transcripts have two-fold or greater expression differences after repeated passage. Protein-protein and pathway interaction analysis of the genes with passage-dependent expression levels in subconfluent cultures reveals a 158-node interactome comprised of two interconnected modules with functions pertaining to wound response and cell division. Among the wound response genes are the TGFß pathway activators: TGFB1, TGFB2, INHBA, INHBB, GDF6, CTGF, and THBS1. Significantly, inhibition of TGFBR1/ACVR1B mediated signaling using receptor kinase inhibitors both forestalls and largely reverses the passage-dependent loss of epithelial potential; thus extending the effective lifespan by at least four passages. Moreover, a disproportionate number of RPE wound response genes have altered expression in neovascular and geographic AMD, including key members of the TGFß pathway. CONCLUSIONS: In RPE cells the switch to a persistent mesenchymal state following prolonged wound stimulus is driven by lasting activation of the TGFß pathway. Targeted inhibition of TGFß signaling may be an effective approach towards retarding AMD progression and producing RPE cells in quantity for research and cell-based therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA