Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(48): 19519-24, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218589

RESUMO

The rapidly growing recognition of the role of oncogenic ROS1 fusion proteins in the malignant transformation of multiple cancers, including lung adenocarcinoma, cholangiocarcinoma, and glioblastoma, is driving efforts to develop effective ROS1 inhibitors for use as molecularly targeted therapy. Using a multidisciplinary approach involving small molecule screening in combination with in vitro and in vivo tumor models, we show that foretinib (GSK1363089) is a more potent ROS1 inhibitor than crizotinib (PF-02341066), an ALK/ROS inhibitor currently in clinical evaluation for lung cancer patients harboring ROS1 rearrangements. Whereas crizotinib has demonstrated promising early results in patients with ROS1-rearranged non-small-cell lung carcinoma, recently emerging clinical evidence suggests that patients may develop crizotinib resistance due to acquired point mutations in the kinase domain of ROS1, thus necessitating identification of additional potent ROS1 inhibitors for therapeutic intervention. We confirm that the ROS1(G2032R) mutant, recently reported in clinical resistance to crizotinib, retains foretinib sensitivity at concentrations below safe, clinically achievable levels. Furthermore, we use an accelerated mutagenesis screen to preemptively identify mutations in the ROS1 kinase domain that confer resistance to crizotinib and demonstrate that these mutants also remain foretinib sensitive. Taken together, our data strongly suggest that foretinib is a highly effective ROS1 inhibitor, and further clinical investigation to evaluate its potential therapeutic benefit for patients with ROS1-driven malignancies is warranted.


Assuntos
Anilidas/farmacologia , Oncogenes/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinolinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Primers do DNA/genética , Citometria de Fluxo , Camundongos , Dados de Sequência Molecular , Mutagênese , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA
2.
Protein Sci ; 29(9): 1945-1963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697405

RESUMO

Age-related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long-lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface-exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen-deuterium exchange, and susceptibility to disulfide cross-linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light-scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide-linked aggregates. The lens-specific chaperone αA-crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS-crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.


Assuntos
Cristalino/química , Agregados Proteicos , Desdobramento de Proteína , gama-Cristalinas/química , Desaminação , Humanos
3.
J Mol Biol ; 347(2): 367-83, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15740747

RESUMO

Several secreted proteases are synthesized with N-terminal propeptides that function as intramolecular chaperones (IMCs) and direct the folding of proteases to their native functional states. Using subtilisin E as our model system, we had earlier established that (i) release and degradation of the IMC from its complex with the protease upon completion of folding is the rate-determining step to protease maturation and, (ii) IMC of SbtE is an extremely charged, intrinsically unstructured polypeptide that adopts an alpha-beta structure only in the presence of the protease. Here, we explore the mechanism of IMC release and the intricate relationship between IMC structure and protease activation. We establish that the release of the first IMC from its protease domain is a non-deterministic event that subsequently triggers an activation cascade through trans-proteolysis. By in silico simulation of the protease maturation pathway through application of stochastic algorithms, we further analyze the sub-stages of the release step. Our work shows that modulating the structure of the IMC domain through external solvent conditions can vary both the time and randomness of protease activation. This behavior of the protease can be correlated to varying the release-rebinding equilibrium of IMC, through simulation. Thus, a delicate balance underlies IMC structure, release, and protease activation. Proteases are ubiquitous enzymes crucial for fundamental cellular processes and require deterministic activation mechanisms. Our work on SbtE establishes that through selection of an intrinsically unstructured IMC domain, nature appears to have selected for a viable deterministic handle that controls a fundamentally random event. While this outlines an important mechanism for regulation of protease activation, it also provides a unique approach to maintain industrially viable subtilisins in extremely stable states that can be activated at will.


Assuntos
Chaperonas Moleculares/metabolismo , Conformação Proteica , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Subtilisinas/metabolismo , Algoritmos , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Glicerol/química , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Precursores de Proteínas/química , Processos Estocásticos , Subtilisinas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA