Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(8): 849-858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39001972

RESUMO

The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.


Assuntos
Cádmio , Microbioma Gastrointestinal , Caramujos , Animais , Cádmio/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , RNA Ribossômico 16S , Morus , Folhas de Planta
2.
Ecotoxicol Environ Saf ; 256: 114853, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023650

RESUMO

Soil cadmium (Cd) pollution presents a severe pollution burden to flora and fauna due to its non-degradability and transferability. The Cd in the soil is stressing the silkworm (Bombyx mori) out through a soil-mulberry-silkworm system. The gut microbiota of B.mori are reported to shape host health. However, earlier research had not reported the effect of endogenous Cd-polluted mulberry leaves on the gut microbiota of B.mori. In the current research, we compared the phyllosphere bacteria of endogenous Cd-polluted mulberry leaves at different concentrations. The investigation of the gut bacteria of B.mori fed with the mulberry leaves was done to evaluate the impact of endogenous Cd- polluted mulberry leaves on the gut bacteria of the silkworm. The results revealed a dramatic change in the gut bacteria of B.mori whereas, the changes in the phyllosphere bacteria of mulberry leaves in response to an increased Cd concentration were insignificant. It also increased the α-diversity and altered the gut bacterial community structure of B. mori. A significant change in the abundance of dominant phyla of gut bacteria of B.mori was recorded. At the genus level, the abundance of Enterococcus, Brachybacterium and Brevibacterium group related to disease resistance, and the abundance of Sphingomonas, Glutamicibacter and Thermus related to metal detoxification was significantly increased after Cd exposure. Meanwhile, there was a significant decrease in the abundance of the pathogenic bacteria Serratia and Enterobacter. The results demonstrated that endogenous Cd-polluted mulberry leaves caused perturbations in the gut bacterial composition of B.mori, which may driven by Cd content rather than phyllosphere bacteria. A significant variation in the specific bacterial community indicated the adaptation of B. mori gut for its role in heavy metal detoxification and immune function regulation. The results of this study help to understand the bacterial community associated with endogenous Cd-polluted resistance in the gut of B.mori, which proves to be a novel addition in describing its response in activating the detoxification mechanism and promoting its growth and development. This research work will help to explore the other mechanisms and microbiota associated with the adaptations to mitigate the Cd pollution problems.


Assuntos
Bombyx , Morus , Animais , Bombyx/microbiologia , Cádmio/análise , Bactérias , Solo/química
3.
Front Plant Sci ; 15: 1427166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323532

RESUMO

Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA