RESUMO
We previously developed a computer-assisted image analysis algorithm to detect and quantify the microscopic features of rodent progressive cardiomyopathy (PCM) in rat heart histologic sections and validated the results with a panel of five veterinary toxicologic pathologists using a multinomial logistic model. In this study, we assessed both the inter-rater and intra-rater agreement of the pathologists and compared pathologists' ratings to the artificial intelligence (AI)-predicted scores. Pathologists and the AI algorithm were presented with 500 slides of rodent heart. They quantified the amount of cardiomyopathy in each slide. A total of 200 of these slides were novel to this study, whereas 100 slides were intentionally selected for repetition from the previous study. After a washout period of more than six months, the repeated slides were examined to assess intra-rater agreement among pathologists. We found the intra-rater agreement to be substantial, with weighted Cohen's kappa values ranging from k = 0.64 to 0.80. Intra-rater variability is not a concern for the deterministic AI. The inter-rater agreement across pathologists was moderate (Cohen's kappa k = 0.56). These results demonstrate the utility of AI algorithms as a tool for pathologists to increase sensitivity and specificity for the histopathologic assessment of the heart in toxicology studies.
Assuntos
Inteligência Artificial , Cardiomiopatias , Variações Dependentes do Observador , Animais , Cardiomiopatias/patologia , Ratos , Algoritmos , Miocárdio/patologia , Processamento de Imagem Assistida por Computador/métodos , Patologistas , Reprodutibilidade dos TestesRESUMO
Antimony trioxide (AT) is used as a flame retardant in fabrics and plastics. Occupational exposure in miners and smelters is mainly through inhalation and dermal contact. Chronic inhalation exposure to AT particulates in B6C3F1/N mice and Wistar Han rats resulted in increased incidences and tumor multiplicities of alveolar/bronchiolar carcinomas (ABCs). In this study, we demonstrated Kras (43%) and Egfr (46%) hotspot mutations in mouse lung tumors (n = 80) and only Egfr (50%) mutations in rat lung tumors (n = 26). Interestingly, there were no differences in the incidences of these mutations in ABCs from rats and mice at exposure concentrations that did and did not exceed the pulmonary overload threshold. There was increased expression of p44/42 mitogen-activated protein kinase (MAPK) (Erk1/2) protein in ABCs harboring mutations in Kras and/or Egfr, confirming the activation of MAPK signaling. Transcriptomic analysis indicated significant alterations in MAPK signaling such as ephrin receptor signaling and signaling by Rho-family GTPases in AT-exposed ABCs. In addition, there was significant overlap between transcriptomic data from mouse ABCs due to AT exposure and human pulmonary adenocarcinoma data. Collectively, these data suggest chronic AT exposure exacerbates MAPK signaling in ABCs and, thus, may be translationally relevant to human lung cancers.
Assuntos
Adenocarcinoma Bronquioloalveolar , Neoplasias Pulmonares , Camundongos , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/patologia , Proteínas Quinases Ativadas por Mitógeno , Exposição por Inalação/efeitos adversos , Ratos Wistar , Camundongos Endogâmicos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Receptores ErbB/genéticaRESUMO
Sodium metavanadate (NaVO3 ) is a pentavalent vanadium compound used in the metal industry and dietary supplements; human exposure occurs through inhalation of fumes and dust and ingestion of NaVO3 -containing products. The objective of this study was to assess the potential immunotoxicity of NaVO3 . Female B6C3F1/N mice were exposed to 0-500 ppm NaVO3 in drinking water for 28 days and evaluated for effects on immune cell populations and innate, cellular-mediated, and humoral-mediated immunity. There was a decreasing trend in body weight (BW) and BW gain in NaVO3 exposed mice, with a decrease (p ≤ 0.05) in BW gain at ≥250 ppm, relative to control. Conversely, increasing trends in spleen weights and an increase (p ≤ 0.05) in the spleen:BW ratio at ≥250 ppm NaVO3 were observed. NaVO3 exposure altered antibody production against sheep red blood cells (SRBC). Antibody forming cells (AFC)/106 spleen cells exhibited a decreasing trend, with a decrease (p ≤ 0.05) at 500 ppm NaVO3 , concurrent with an increase in percent B cells. NaVO3 had no effect on the serum anti-SRBC IgM antibody titers or anti-keyhole limpet hemocyanin antibody production. Exposure to NaVO3 decreased the percentage of natural killer cells at all dose levels (p ≤ 0.05), with no effect on the lytic activity. NaVO3 altered T-cell populations at 500 ppm but had no effect on T-cell proliferative responses or the lytic activity of cytotoxic T cells. Collectively, these data indicate that NaVO3 exposure can adversely affect the immune system by inducing alterations in humoral-mediated immunity, specifically the AFC response, with no effect on cell-mediated or innate immunity.
Assuntos
Água Potável , Camundongos , Feminino , Humanos , Animais , Ovinos , Vanadatos/toxicidade , Camundongos Endogâmicos , Baço , SódioRESUMO
BACKGROUND AND AIMS: In this study ten mouse strains representing ~90% of genetic diversity in laboratory mice (B6C3F1/J, C57BL/6J, C3H/HeJ, A/J, NOD.B1oSnH2/J, NZO/HILtJ, 129S1/SvImJ, WSB/EiJ, PWK/PhJ, CAST/EiJ) were examined to identify the mouse strain with the lowest incidence of cancer. The unique single polymorphisms (SNPs) associated with this low cancer incidence are reported. METHODS: Evaluations of cancer incidence in the 10 mouse strains were based on gross and microscopic diagnosis of tumors. Single nucleotide polymorphisms (SNPs) in the coding regions of the genome were derived from the respective mouse strains located in the Sanger mouse sequencing database and the B6C3F1/N genome from the National Toxicology Program (NTP). RESULTS: The WSB strain had an overall lower incidence of both benign and malignant tumors compared to the other mouse strains. At 2 years, the incidence of total malignant tumors (Poly-3 incidence rate) ranged from 2% (WSB) to 92% (C3H) in males, and 14% (WSB) to 93% (NZO) in females, and the total incidence of benign and malignant tumor incidence ranged from 13% (WSB) to 99% (C3H) in males and 25% (WSB) to 96% (NOD) in females. Single nucleotide polymorphism (SNP) patterns were examined in the following strains: B6C3F1/N, C57BL/6J, C3H/HeJ, 129S1/SvImJ, A/J, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ. We identified 7519 SNPs (involving 5751 Ensembl transcripts of 3453 Ensembl Genes) that resulted in a unique amino acid change in the coding region of the WSB strain. CONCLUSIONS: The inherited genetic patterns in the WSB cancer-resistant mouse strain occurred in genes involved in multiple cell functions including mitochondria, metabolic, immune, and membrane-related cell functions. The unique SNP patterns in a cancer resistant mouse strain provides insights for understanding and developing strategies for cancer prevention.
Assuntos
Neoplasias , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Camundongos , Animais , Polimorfismo de Nucleotídeo Único/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C3H , Fenótipo , Camundongos Endogâmicos , Neoplasias/genética , Aminoácidos/genéticaRESUMO
Ionic liquids (ILs) are synthetic solvents used as replacements for volatile organic solvents. Human exposure occurs through dermal or oral routes. In rodents, several ILs were reported to induce dermal toxicity, irritation, and sensitization. Due to the potential for occupational exposure, and industrial use as nonvolatile solvents, 1-ethyl-3-methylimidazolium chloride (EMIM, 6.25% to 50% v/v), 1-butyl-3-methylimidazolium chloride (BMIM, 3.12% to 12.5% v/v), 1-butyl-1-methylpyrrolidinium chloride (BMPY, 0.825% to 6.25% v/v), and N-butylpyridinium chloride (NBuPY, 0.825% to 12.5% v/v) were nominated to the National Toxicology Program and evaluated for skin sensitization. The test compound was applied to the ears of female BALB/c mice daily for 3 days in a primary irritancy (IRR)/local lymph node assay (LLNA). Sensitization was assessed in vitro in the direct peptide reactivity assay (DPRA), KeratinoSens™ assay, and human cell line activation test (h-CLAT). In the LLNA, the butylated ILs, BMIM, and BMPY were more potent than NBuPY (butylated) or EMIM (ethylated), which was neither an irritant nor a sensitizer. NBuPY induced skin irritation in vivo at ≥3.12% (p ≤ 0.01), and sensitization in vitro in the KeratinoSens™ assay and h-CLAT, but was negative for sensitization in vivo and in the DPRA. Although SI3 was not achieved, dermal treatment with 12.5% BMIM or 6.25% BMPY increased (p ≤ 0.01) lymph node cell proliferation in the LLNA. In vitro, BMIM was positive for sensitization in the h-CLAT, and BMPY was positive in the h-CLAT and KeratinoSens™ assay; both were negative in the DPRA. Integrated data analyses, weighted toward in vivo data, suggested that BMIM and BMPY may induce weak to mild sensitization.
Assuntos
Cloretos/efeitos adversos , Dermatite Alérgica de Contato/etiologia , Líquidos Iônicos/efeitos adversos , Pele/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Rodent progressive cardiomyopathy (PCM) encompasses a constellation of microscopic findings commonly seen as a spontaneous background change in rat and mouse hearts. Primary histologic features of PCM include varying degrees of cardiomyocyte degeneration/necrosis, mononuclear cell infiltration, and fibrosis. Mineralization can also occur. Cardiotoxicity may increase the incidence and severity of PCM, and toxicity-related morphologic changes can overlap with those of PCM. Consequently, sensitive and consistent detection and quantification of PCM features are needed to help differentiate spontaneous from test article-related findings. To address this, we developed a computer-assisted image analysis algorithm, facilitated by a fully convolutional network deep learning technique, to detect and quantify the microscopic features of PCM (degeneration/necrosis, fibrosis, mononuclear cell infiltration, mineralization) in rat heart histologic sections. The trained algorithm achieved high values for accuracy, intersection over union, and dice coefficient for each feature. Further, there was a strong positive correlation between the percentage area of the heart predicted to have PCM lesions by the algorithm and the median severity grade assigned by a panel of veterinary toxicologic pathologists following light microscopic evaluation. By providing objective and sensitive quantification of the microscopic features of PCM, deep learning algorithms could assist pathologists in discerning cardiotoxicity-associated changes.
Assuntos
Inteligência Artificial , Cardiomiopatias , Algoritmos , Animais , Cardiomiopatias/induzido quimicamente , Camundongos , Redes Neurais de Computação , Ratos , RoedoresRESUMO
Rodent alveolar/bronchiolar carcinomas (ABC) that arise either spontaneously or due to chemical exposure are similar to a subtype of lung adenocarcinomas in humans. B6C3F1/N mice and F344/NTac rats exposed to cobalt metal dust (CMD) by inhalation developed ABCs in a dose dependent manner. In CMD-exposed mice, the incidence of Kras mutations in ABCs was 67% with 80% of those being G to T transversions on codon 12 suggesting a role of oxidative stress in the pathogenesis. In vitro studies, such as DMPO (5,5-dimethyl-1-pyrroline N-oxide) immune-spin trapping assay, and dihydroethidium (DHE) fluorescence assay on A549 and BEAS-2B cells demonstrated increased oxidative stress due to cobalt exposure. In addition, significantly increased 8-oxo-dG adducts were demonstrated by immunohistochemistry in lungs from mice exposed to CMD for 90 days. Furthermore, transcriptomic analysis on ABCs arising spontaneously or due to chronic CMD-exposure demonstrated significant alterations in canonical pathways related to MAPK signaling (IL-8, ErbB, Integrin, and PAK pathway) and oxidative stress (PI3K/AKT and Melatonin pathway) in ABCs from CMD-exposed mice. Oxidative stress can stimulate PI3K/AKT and MAPK signaling pathways. Nox4 was significantly upregulated only in CMD-exposed ABCs and NOX4 activation of PI3K/AKT can lead to increased ROS levels in human cancer cells. The gene encoding Ereg was markedly up-regulated in CMD-exposed mice. Oncogenic KRAS mutations have been shown to induce EREG overexpression. Collectively, all these data suggest that oxidative stress plays a significant role in CMD-induced pulmonary carcinogenesis in rodents and these findings may also be relevant in the context of human lung cancers.
Assuntos
Neoplasias Brônquicas/induzido quimicamente , Cobalto/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Adenocarcinoma Bronquioloalveolar/induzido quimicamente , Adenocarcinoma Bronquioloalveolar/patologia , Animais , Neoplasias Brônquicas/patologia , Carcinogênese/induzido quimicamente , Linhagem Celular , Relação Dose-Resposta a Droga , Poeira , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Endogâmicos F344RESUMO
Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells (P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 (P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors (P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.
Assuntos
Doenças do Cão , Glioma , Animais , Antígenos CD20 , Cães , Glioma/veterinária , Imuno-Histoquímica , Linfócitos do Interstício Tumoral , Linfócitos T ReguladoresRESUMO
Human exposure to pentabromodiphenyl ether (PBDE) mixture (DE-71) and its PBDE-47 congener can occur both in utero and during lactation. Here, we tested the hypothesis that PBDE-induced neonatal hepatic transcriptomic alterations in Wistar Han rat pups can inform on potential toxicity and carcinogenicity after longer term PBDE exposures. Wistar Han rat dams were exposed to either DE-71 or PBDE-47 daily from gestation day (GD 6) through postnatal day 4 (PND 4). Total plasma thyroxine (T4) was decreased in PND 4 pups. In liver, transcripts for CYPs and conjugation enzymes, Nrf2, and ABC transporters were upregulated. In general, the hepatic transcriptomic alterations after exposure to DE-71 or PBDE-47 were similar and provided early indicators of oxidative stress and metabolic alterations, key characteristics of toxicity processes. The transcriptional benchmark dose lower confidence limits of the most sensitive biological processes were lower for PBDE-47 than for the PBDE mixture. Neonatal rat liver transcriptomic data provide early indicators on molecular pathway alterations that may lead to toxicity and/or carcinogenicity if the exposures continue for longer durations. These early toxicogenomic indicators may be used to help prioritize chemicals for a more complete toxicity and cancer risk evaluation.
Assuntos
Éteres Difenil Halogenados/toxicidade , Fígado/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Éteres Difenil Halogenados/sangue , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Ratos , Ratos WistarRESUMO
It is well established that hexachlorophene, which is used as an antibacterial agent, causes intramyelinic edema in humans and animal models. The hexachlorophene myelinopathy model, in which male Sprague-Dawley rats received 25 to 30 mg/kg hexachlorophene by gavage for up to 5 days, provided an opportunity to compare traditional neuropathology evaluations with magnetic resonance microscopy (MRM) findings. In addition, stereology assessments of 3 neuroanatomical sites were compared to quantitative measurements of similar structures by MRM. There were positive correlations between hematoxylin and eosin and luxol fast blue stains and MRM for identifying intramyelinic edema in the cingulum of corpus callosum, optic chiasm, anterior commissure (aca), lateral olfactory tracts, pyramidal tracts (py), and white matter tracts in the cerebellum. Stereology assessments were focused on the aca, longitudinal fasciculus of the pons, and py and demonstrated differences between control and treated rats, as was observed using MRM. The added value of MRM assessments was the ability to acquire qualitative 3-dimensional (3-D) images and obtain quantitative measurements of intramyelinic edema in 26 neuroanatomical sites in the intact brain. Also, diffusion tensor imaging (fractional anisotropy [FA]) indicated that there were changes in the cytoarchitecture of the white matter as detected by decreases in the FA in the treated compared to the control rats. This study demonstrates creative strategies that are possible using qualitative and quantitative assessments of potential white matter neurotoxicants in nonclinical toxicity studies. Our results lead us to the conclusion that volumetric analysis by MRM and stereology adds significant value to the standard 2-D microscopic evaluations.
Assuntos
Imagem de Tensor de Difusão , Hexaclorofeno , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Microscopia , Ratos , Ratos Sprague-DawleyRESUMO
Ginkgo biloba extract (GBE) is used in traditional Chinese medicine as a herbal supplement for improving memory. Exposure of B6C3F1/N mice to GBE in a 2-year National Toxicology Program (NTP) bioassay resulted in a dose-dependent increase in hepatocellular carcinomas (HCC). To identify key microRNAs that modulate GBE-induced hepatocarcinogenesis, we compared the global miRNA expression profiles in GBE-exposed HCC (GBE-HCC) and spontaneous HCC (SPNT-HCC) with age-matched vehicle control normal livers (CNTL) from B6C3F1/N mice. The number of differentially altered miRNAs in GBE-HCC and SPNT-HCC was 74 (52 up and 22 down) and 33 (15 up and 18 down), respectively. Among the uniquely differentially altered miRNAs in GBE-HCC, miR-31 and one of its predicted targets, Cdk1 were selected for functional validation. A potential miRNA response element (MRE) in the 3'-untranslated regions (3'-UTR) of Cdk1 mRNA was revealed by in silico analysis and confirmed by luciferase assays. In mouse hepatoma cell line HEPA-1 cells, we demonstrated an inverse correlation between miR-31 and CDK1 protein levels, but no change in Cdk1 mRNA levels, suggesting a post-transcriptional effect. Additionally, a set of miRNAs (miRs-411, 300, 127, 134, 409-3p, and 433-3p) that were altered in the GBE-HCCs were also altered in non-tumor liver samples from the 90-day GBE-exposed group compared to the vehicle control group, suggesting that some of these miRNAs could serve as potential biomarkers for GBE exposure or hepatocellular carcinogenesis. These data increase our understanding of miRNA-mediated epigenetic regulation of GBE-mediated hepatocellular carcinogenesis in B6C3F1/N mice.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Extratos Vegetais/toxicidade , Transcriptoma , Regiões 3' não Traduzidas , Animais , Biomarcadores Tumorais/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ginkgo biloba , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Fatores de TempoRESUMO
Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10â¯000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.
Assuntos
Mutagênicos/análise , Animais , Células CHO , Linhagem Celular Tumoral , Galinhas , Cricetulus , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mutagênicos/farmacologia , Curva ROCRESUMO
Thymomas from 277 Fischer 344/N (F344/N), 10 Sprague Dawley (HSD:Sprague Dawley SD) (SD), 129 Wistar Han [Crl:WI(Han)] (WH), and 4 Wistar Outbred (WO) rats were reviewed from long-term studies in the National Toxicology Program (NTP) database. The incidence of thymomas in F344/N rats was slightly higher in males than in females, while the incidences in SD and WH rats were higher in females than in males. Only male WO rats were used in NTP studies. Of the 277 thymomas in F344/N rats, 235 (84.8%) were benign and 42 (15.2%) malignant, 14 of which exhibited metastasis. Of the 10 thymomas in SD rats, 5 (50%) were benign and 5 (50%) were malignant, one of which exhibited metastasis. Of the 129 thymomas in WH rats, 126 (98%) were benign and 3 (2%) were malignant, 1 with metastasis. Of the 4 thymomas in WO rats, 3 (75%) were benign and 1 (25%) was malignant, with no metastases. Malignant thymomas in F344/N and WH rats showed a propensity to be the cause of death and to result in early mortality, whereas the benign thymomas were associated less often with decreased survival. No occurrences of this neoplasm were reported to be related to exposure to any test articles.
Assuntos
Doenças dos Roedores/epidemiologia , Timoma/veterinária , Neoplasias do Timo/veterinária , Animais , Feminino , Incidência , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar , Timoma/epidemiologia , Neoplasias do Timo/epidemiologiaRESUMO
Study design, statistical analysis, interpretation of results, and conclusions should be a part of all research papers. Statistics are integral to each of these components and are therefore necessary to evaluate during manuscript peer review. Research published in Toxicological Pathology is often focused on animal studies that may seek to compare defined treatment groups in randomized controlled experiments or focus on the reliability of measurements and diagnostic accuracy of observed lesions from preexisting studies. Reviewers should distinguish scientific research goals that aim to test sufficient effect size differences (i.e., minimizing false positive rates) from common toxicologic goals of detecting a harmful effect (i.e., minimizing false negative rates). This journal comprises a wide range of study designs that require different kinds of statistical assessments. Therefore, statistical methods should be described in enough detail so that the experiment can be repeated by other research groups. The misuse of statistics will impede reproducibility.
Assuntos
Patologia/estatística & dados numéricos , Revisão da Pesquisa por Pares/normas , Projetos de Pesquisa/estatística & dados numéricos , Toxicologia/estatística & dados numéricos , Animais , Reprodutibilidade dos TestesRESUMO
There was a significant increase in the incidence of retinal degeneration in F344/N rats chronically exposed to Kava kava extract (KKE) in National Toxicology Program (NTP) bioassay. A retrospective evaluation of these rat retinas indicated a similar spatial and morphological alteration as seen in light-induced retinal degeneration in albino rats. Therefore, it was hypothesized that KKE has a potential to exacerbate the light-induced retinal degeneration. To investigate the early mechanism of retinal degeneration, we conducted a 90-day F344/N rat KKE gavage study at doses of 0 and 1.0 g/kg (dose which induced retinal degeneration in the 2-year NTP rat KKE bioassay). The morphological evaluation indicated reduced number of phagosomes in the retinal pigment epithelium (RPE) of the superior retina. Transcriptomic alterations related to retinal epithelial homeostasis and melatoninergic signaling were observed in microarray analysis. Phagocytosis of photoreceptor outer segment by the underlying RPE is essential to maintain the homeostasis of the photoreceptor layer and is regulated by melatonin signaling. Therefore, reduced photoreceptor outer segment disc shedding and subsequent lower number of phagosomes in the RPE and alterations in the melatonin pathway may have contributed to the increased incidences of retinal degeneration observed in F344/N rats in the 2-year KKE bioassay.
Assuntos
Kava/química , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Extratos Vegetais/toxicidade , Degeneração Retiniana/induzido quimicamente , Pigmentos da Retina/metabolismo , Animais , Masculino , Fagossomos/ultraestrutura , Extratos Vegetais/isolamento & purificação , Ratos Endogâmicos F344 , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/ultraestrutura , Transcriptoma/efeitos dos fármacosRESUMO
N,N-dimethyl-p-toluidine (DMPT), an accelerant for methyl methacrylate monomers in medical devices, was a liver carcinogen in male and female F344/N rats and B6C3F1 mice in a 2-year oral exposure study. p-Toluidine, a structurally related chemical, was a liver carcinogen in mice but not in rats in an 18-month feed exposure study. In this current study, liver transcriptomic data were used to characterize mechanisms in DMPT and p-toluidine liver toxicity and for conducting benchmark dose (BMD) analysis. Male F344/N rats were exposed orally to DMPT or p-toluidine (0, 1, 6, 20, 60 or 120 mg/kg/day) for 5 days. The liver was examined for lesions and transcriptomic alterations. Both chemicals caused mild hepatic toxicity at 60 and 120 mg/kg and dose-related transcriptomic alterations in the liver. There were 511 liver transcripts differentially expressed for DMPT and 354 for p-toluidine at 120 mg/kg/day (false discovery rate threshold of 5 %). The liver transcriptomic alterations were characteristic of an anti-oxidative damage response (activation of the Nrf2 pathway) and hepatic toxicity. The top cellular processes in gene ontology (GO) categories altered in livers exposed to DMPT or p-toluidine were used for BMD calculations. The lower confidence bound benchmark doses for these chemicals were 2 mg/kg/day for DMPT and 7 mg/kg/day for p-toluidine. These studies show the promise of using 5-day target organ transcriptomic data to identify chemical-induced molecular changes that can serve as markers for preliminary toxicity risk assessment.
Assuntos
Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Toluidinas/toxicidade , Animais , Carcinógenos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Medição de Risco/métodos , Toluidinas/administração & dosagem , Transcriptoma/efeitos dos fármacosRESUMO
N, N-dimethyl-p-toluidine (DMPT; Cas No. 99-97-8), an accelerant for methyl methacrylate monomers in medical devices, is a nasal cavity carcinogen according to a 2-yr cancer study of male and female F344/N rats, with the nasal tumors arising from the transitional cell epithelium. In this study, we exposed male F344/N rats for 5 days to DMPT (0, 1, 6, 20, 60, or 120 mg/kg [oral gavage]) to explore the early changes in the nasal cavity after short-term exposure. Lesions occurred in the nasal cavity including hyperplasia of transitional cell epithelium (60 and 120 mg/kg). Nasal tissue was rapidly removed and preserved for subsequent laser capture microdissection and isolation of the transitional cell epithelium (0 and 120 mg/kg) for transcriptomic studies. DMPT transitional cell epithelium gene transcript patterns were characteristic of an antioxidative damage response (e.g., Akr7a3, Maff, and Mgst3), cell proliferation, and decrease in signals for apoptosis. The transcripts of amino acid transporters were upregulated (e.g., Slc7a11). The DMPT nasal transcript expression pattern was similar to that found in the rat nasal cavity after formaldehyde exposure, with over 1,000 transcripts in common. Molecular changes in the nasal cavity after DMPT exposure suggest that oxidative damage is a mechanism of the DMPT toxic and/or carcinogenic effects.
Assuntos
Carcinógenos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/patologia , Toluidinas/toxicidade , Animais , Masculino , Ratos , Ratos Endogâmicos F344 , Transcriptoma/efeitos dos fármacosRESUMO
Vinylidene chloride (VDC) has been widely used in the production of plastics and flame retardants. Exposure of B6C3F1 mice to VDC in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increases in renal cell hyperplasia, renal cell adenoma, and renal cell carcinomas (RCCs). Among those differentially expressed genes from controls and RCC of VDC-exposed mice, there was an overrepresentation of genes from pathways associated with chronic xenobiotic and oxidative stress as well as c-Myc overexpression and dysregulation of TP53 cell cycle checkpoint and DNA damage repair pathways in RCC. Trend analysis comparing RCC, VDC-exposed kidney, and chamber control kidney showed a conservation of pathway dysregulation in terms of overrepresentation of xenobiotic and oxidative stress, and DNA damage and cell cycle checkpoint pathways in both VDC-exposed kidney and RCC, suggesting that these mechanisms play a role in the pathogenesis of RCC in VDC-exposed mice.
Assuntos
Carcinoma de Células Renais , Dicloroetilenos/toxicidade , Neoplasias Renais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma de Células Renais/induzido quimicamente , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/fisiopatologia , Masculino , Camundongos , Mutação , Testes de Toxicidade Crônica , Proteína Supressora de Tumor p53/metabolismoRESUMO
A majority (â¼80%) of human malignant mesotheliomas are asbestos-related. However, non-asbestos risk factors (radiation, chemicals, and genetic factors) account for up to 30% of cases. A recent 2-year National Toxicology Program carcinogenicity bioassay showed that male F344/N rats exposed to the industrial toxicant vinylidene chloride (VDC) resulted in a marked increase in malignant mesothelioma. Global gene expression profiles of these tumors were compared to spontaneous mesotheliomas and the F344/N rat mesothelial cell line (Fred-PE) in order to characterize the molecular features and chemical-specific profiles of mesothelioma in VDC-exposed rats. As expected, mesotheliomas from control and VDC-exposed rats shared pathways associated with tumorigenesis, including cellular and tissue development, organismal injury, embryonic development, inflammatory response, cell cycle regulation, and cellular growth and proliferation, while mesotheliomas from VDC-exposed rats alone showed overrepresentation of pathways associated with pro-inflammatory pathways and immune dysfunction such as the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, interleukin (IL)-8 and IL-12 signaling, interleukin responses, Fc receptor signaling, and natural killer and dendritic cells signaling, as well as overrepresentation of DNA damage and repair. These data suggest that a chronic, pro-inflammatory environment associated with VDC exposure may exacerbate disturbances in oncogene, growth factor, and cell cycle regulation, resulting in an increased incidence of mesothelioma.
Assuntos
Dicloroetilenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Doenças do Sistema Imunitário/induzido quimicamente , Inflamação/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Animais , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Genes cdc/efeitos dos fármacos , Doenças do Sistema Imunitário/imunologia , Inflamação/fisiopatologia , Masculino , Mesotelioma Maligno , Análise em Microsséries , Neoplasias Peritoneais/induzido quimicamente , Neoplasias Peritoneais/patologia , RNA Neoplásico/biossíntese , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos , Neoplasias Testiculares/induzido quimicamente , Neoplasias Testiculares/patologiaRESUMO
The cell of origin of hepatoblastoma (HB) in humans and mice is unknown; it is hypothesized to be a transformed hepatocyte, oval cell, or hepatic progenitor cell. In mice, current dogma is that HBs arise from preexisting hepatocellular neoplasms as a result of further neoplastic transformation. However, there is little evidence supporting this direct relationship. To better understand the relationship between hepatocellular carcinoma (HCC) and HB and determine molecular similarities between mouse and human HB, global gene expression analysis and targeted mutation analysis were performed using HB, HCC, and adjacent liver from the same animals in a recent National Toxicology Program bioassay. There were significant differences in Hras and Ctnnb1 mutation spectra, and by microarray, HBs showed dysregulation of embryonic development, stem cell pluripotency, and genomic imprinting compared to HCC. Meta-analysis showed similarities between HB, early mouse embryonic liver, and hepatocyte-derived stem/progenitor cells compared to HCC. Our data show that there are striking differences between HB and HCC and suggest that HB is a significantly different entity that may arise from a hepatic precursor cell. Furthermore, mouse HB is similar to the human disease at the pathway level and therefore is likely a relevant model for evaluating human cancer hazard.