Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Pediatr ; 175: 137-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283463

RESUMO

OBJECTIVE: To assess medical resource utilization associated with Prader-Willi syndrome (PWS) in the US, hypothesized to be greater relative to a matched control group without PWS. STUDY DESIGN: We used a retrospective case-matched control design and longitudinal US administrative claims data (MarketScan) during a 5-year enrollment period (2009-2014). Patients with PWS were identified by Classification of Diseases, Ninth Revision, Clinical Modification diagnosis code 759.81. Controls were matched on age, sex, and payer type. Outcomes included total, outpatient, inpatient and prescription costs. RESULTS: After matching and application of inclusion/exclusion criteria, we identified 2030 patients with PWS (1161 commercial, 38 Medicare supplemental, and 831 Medicaid). Commercially insured patients with PWS (median age 10 years) had 8.8-times greater total annual direct medical costs than their counterparts without PWS (median age 10 years: median costs $14 907 vs $819; P < .0001; mean costs: $28 712 vs $3246). Outpatient care comprised the largest portion of medical resource utilization for enrollees with and without PWS (median $5605 vs $675; P < .0001; mean $11 032 vs $1804), followed by mean annual inpatient and medication costs, which were $10 879 vs $1015 (P < .001) and $6801 vs $428 (P < .001), respectively. Total annual direct medical costs were ∼42% greater for Medicaid-insured patients with PWS than their commercially insured counterparts, an increase partly explained by claims for Medicaid Waiver day and residential habilitation. CONCLUSION: Direct medical resource utilization was considerably greater among patients with PWS than members without the condition. This study provides a first step toward quantifying the financial burden of PWS posed to individuals, families, and society.


Assuntos
Efeitos Psicossociais da Doença , Custos de Cuidados de Saúde/estatística & dados numéricos , Síndrome de Prader-Willi/economia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Lactente , Recém-Nascido , Seguro Saúde/economia , Estudos Longitudinais , Masculino , Medicaid/economia , Medicare/economia , Pessoa de Meia-Idade , Síndrome de Prader-Willi/terapia , Estudos Retrospectivos , Estados Unidos , Adulto Jovem
2.
Nat Mater ; 18(5): 429-431, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804508
3.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164555

RESUMO

Currently there are numerous methods to evaluate peripheral nerve stimulation interfaces in rats, with stimulation-evoked ankle torque being one of the most prominent. Commercial rat ankle torque measurement systems and custom one-off solutions have been published in the literature. However, commercial systems are proprietary and costly and do not allow for customization. One-off lab-built systems have required specialized machining expertise, and building plans have previously not been made easily accessible. Here, detailed building plans are provided for a low-cost, open-source, and basic ankle torque measurement system from which additional customization can be made. A hindlimb stabilization apparatus was developed to secure and stabilize a rat's hindlimb, while allowing for simultaneous ankle-isometric torque and lower limb muscle electromyography (EMG). The design was composed mainly of adjustable 3D-printed components to accommodate anatomical differences between rat hindlimbs. Additionally, construction and calibration procedures of the rat hindlimb stabilization apparatus were demonstrated in this study. In vivo torque measurements were reliably acquired and corresponded to increasing stimulation amplitudes. Furthermore, implanted leads used for intramuscular EMG recordings complemented torque measurements and were used as an additional functional measurement in evaluating the performance of a peripheral nerve stimulation interface. In conclusion, an open-source and noninvasive platform, made primarily with 3D-printed components, was constructed for reliable data acquisition of evoked motor activity in rat models. The purpose of this apparatus is to provide researchers a versatile system with adjustable components that can be tailored to meet user-defined experimental requirements when evaluating motor function of the rat hindlimbs.


Assuntos
Tornozelo , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/fisiologia , Estimulação Elétrica/métodos , Extremidade Inferior , Membro Posterior/inervação , Membro Posterior/fisiologia , Eletromiografia/métodos , Impressão Tridimensional
4.
J Biomed Mater Res A ; 112(5): 781-792, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38204293

RESUMO

Tracheal stenosis is commonly caused by injury, resulting in inflammation and fibrosis. Inhibiting inflammation and promoting epithelization can reduce recurrence after initial successful treatment of tracheal stenosis. Steroids play an important role in tracheal stenosis management. This study in vitro evaluated effectiveness of a polydopaminated polycaprolactone stent coated with dexamethasone-eluting poly(lactic-co-glycolic) acid microparticles (µPLGA) for tracheal stenosis management. Polydopamination was characterized by Raman spectroscopy and promoted epithelialization while dexamethasone delivery reduced macrophage activity, assessed by individual cell area measurements and immunofluorescent staining for inducible nitric oxide synthase (iNOS). Dexamethasone release was quantified by high-performance liquid chromatography over 30 days. Activation-related increase in cell area and iNOS production by RAW 264.7 were both reduced significantly (p < .05) through dexamethasone release. Epithelial cell spreading was higher on polydopaminated polycaprolactone (PCL) than PCL-alone (p < .05). Force required for stent migration was measured by pullout tests of PCL-µPLGA stents from cadaveric rabbit and porcine tracheas (0.425 ± 0.068 N and 1.082 ± 0.064 N, respectively) were above forces estimated to occur during forced respiration. Biomechanical support provided by stents to prevent airway collapse was assessed by comparing compressive circumferential stiffness, and stiffness of the stent was about 1/10th of the rabbit trachea (0.156 ± 0.023 N/mm vs. 1.420 ± 0.194 N/mm, respectively). A dexamethasone-loaded PCL-µPLGA stent platform can deliver dexamethasone and exhibits sufficient mechanical properties to anchor within the trachea and polydopamination of PCL is conducive to epithelial layer formation. Therefore, a polydopaminated PCL-µPLGA stent is a promising candidate for in vivo evaluation for treatment of tracheal restenosis.


Assuntos
Poliésteres , Estenose Traqueal , Humanos , Animais , Coelhos , Suínos , Glicóis , Traqueia , Stents , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Inflamação
5.
J Neural Eng ; 21(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38502956

RESUMO

Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aßactivation from the undesired Aδ-fiber activation.


Assuntos
Gânglios Espinais , Neurônios , Humanos , Gânglios Espinais/fisiologia , Dor , Estimulação Elétrica , Simulação por Computador
6.
Bioelectron Med ; 10(1): 17, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020366

RESUMO

BACKGROUND: Spinal cord stimulation (SCS) has demonstrated multiple benefits in treating chronic pain and other clinical disorders related to sensorimotor dysfunctions. However, the underlying mechanisms are still not fully understood, including how electrode placement in relation to the spinal cord neuroanatomy influences epidural spinal recordings (ESRs). To characterize this relationship, this study utilized stimulation applied at various anatomical sections of the spinal column, including at levels of the intervertebral disc and regions correlating to the dorsal root entry zone. METHOD: Two electrode arrays were surgically implanted into the dorsal epidural space of the swine. The stimulation leads were positioned such that the caudal-most electrode contact was at the level of a thoracic intervertebral segment. Intraoperative cone beam computed tomography (CBCT) images were utilized to precisely determine the location of the epidural leads relative to the spinal column. High-resolution microCT imaging and 3D-model reconstructions of the explanted spinal cord illustrated precise positioning and dimensions of the epidural leads in relation to the surrounding neuroanatomy, including the spinal rootlets of the dorsal and ventral columns of the spinal cord. In a separate swine cohort, implanted epidural leads were used for SCS and recording evoked ESRs. RESULTS: Reconstructed 3D-models of the swine spinal cord with epidural lead implants demonstrated considerable distinctions in the dimensions of a single electrode contact on a standard industry epidural stimulation lead compared to dorsal rootlets at the dorsal root entry zone (DREZ). At the intervertebral segment, it was observed that a single electrode contact may cover 20-25% of the DREZ if positioned laterally. Electrode contacts were estimated to be ~0.75 mm from the margins of the DREZ when placed at the midline. Furthermore, ventral rootlets were observed to travel in proximity and parallel to dorsal rootlets at this level prior to separation into their respective sides of the spinal cord. Cathodic stimulation at the level of the intervertebral disc, compared to an 'off-disc' stimulation (7 mm rostral), demonstrated considerable variations in the features of recorded ESRs, such as amplitude and shape, and evoked unintended motor activation at lower stimulation thresholds. This substantial change may be due to the influence of nearby ventral roots. To further illustrate the influence of rootlet activation vs. dorsal column activation, the stimulation lead was displaced laterally at ~2.88 mm from the midline, resulting in variances in both evoked compound action potential (ECAP) components and electromyography (EMG) components in ESRs at lower stimulation thresholds. CONCLUSION: The results of this study suggest that the ECAP and EMG components of recorded ESRs can vary depending on small differences in the location of the stimulating electrodes within the spinal anatomy, such as at the level of the intervertebral segment. Furthermore, the effects of sub-centimeter lateral displacement of the stimulation lead from the midline, leading to significant changes in electrophysiological metrics. The results of this pilot study reveal the importance of the small displacement of the electrodes that can cause significant changes to evoked responses SCS. These results may provide further valuable insights into the underlying mechanisms and assist in optimizing future SCS-related applications.

7.
Biomacromolecules ; 14(8): 2790-7, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23841817

RESUMO

Targeted nanoparticles are being pursued for a range of medical applications. Here we utilized targeted nanoparticles (synthetic platelets) to halt bleeding in acute trauma. One of the major questions that arises in the field is the role of surface ligand density in targeted nanoparticles' performance. We developed intravenous hemostatic nanoparticles (GRGDS-NP1) and previously demonstrated their ability to reduce bleeding following femoral artery injury and increase survival after lethal liver trauma in the rat. These nanoparticles are made from block copolymers, poly(lactic-co-glycolic acid)-b-poly L-lysine-b-poly(ethylene glycol). Surface-conjugated targeting ligand density can be tightly controlled with this system, and here we investigated the effect of varying density on hemostasis and biodistribution. We increased the targeting peptide (GRGDS) concentration 100-fold (GRGDS-NP100) and undertook an in vitro dose-response study using rotational thromboelastometry, finding that GRGDS-NP100 hemostatic nanoparticles were efficacious at doses at least 10 times lower than the GRGDS-NP1. These results were recapitulated in vivo, demonstrating efficacy at eight-fold lower concentration after lethal liver trauma. 1 h survival increased to 92% compared with a scrambled peptide control, 45% (OR = 14.4, 95% CI = [1.36, 143]), a saline control, 47% (OR = 13.5, 95% CI = [1.42, 125]), and GRGDS-NP1, 80% (OR = 1.30, n.s.). This work demonstrates the impact of changing synthetic platelet ligand density on hemostasis and lays the foundation for methods to determine optimal ligand concentration parameters.


Assuntos
Hemorragia/tratamento farmacológico , Hemostáticos/administração & dosagem , Hepatopatias/tratamento farmacológico , Nanopartículas/administração & dosagem , Oligopeptídeos/química , Administração Intravenosa , Animais , Hemostáticos/química , Hemostáticos/farmacocinética , Ligantes , Fígado/lesões , Fígado/patologia , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Tromboelastografia , Distribuição Tecidual , Ferimentos não Penetrantes/tratamento farmacológico
8.
Acta Biomater ; 166: 278-290, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211307

RESUMO

Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.


Assuntos
Plaquetas , Hemostáticos , Ratos , Animais , Microeletrodos , Fator de von Willebrand , Doenças Neuroinflamatórias , Colágeno Tipo IV , Eletrodos Implantados/efeitos adversos , Hemostasia , Fibrinogênio
9.
Front Neurosci ; 17: 1169187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332862

RESUMO

Introduction: MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts. Methods: Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve. Results: The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles. Discussion: This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies.

10.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790562

RESUMO

Objective: Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach: We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results: Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance: The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aß activation from the undesired Aδ-fiber activation.

11.
J Neural Eng ; 20(1)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649655

RESUMO

Electrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses. However, it remains unclear if placement can alter the balance between intended effect and limiting side effect. We used an FDA investigational device exemption approved six-contact epineural cuff to deliver VNS in pigs and quantified how epineural electrode location impacts on- and off-target VNS activation. Detailed post-mortem histology was conducted to understand how the underlying neuroanatomy impacts observed functional responses. Here we report the discovery and characterization of clear neuroanatomy-dependent differences in threshold and saturation for responses related to both effect (change in heart rate) and side effect (neck muscle contractions). The histological and electrophysiological data were used to develop and validate subject-specific computation models of VNS, creating a well-grounded quantitative framework to optimize electrode location-specific activation of nerve fibers governing intended effect versus unwanted side effect.


Assuntos
Estimulação do Nervo Vago , Animais , Suínos , Nervo Vago/fisiologia , Coração/fisiologia , Frequência Cardíaca/fisiologia , Eletrodos Implantados
12.
Biomacromolecules ; 13(11): 3850-7, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22998772

RESUMO

Trauma is the leading cause of death for people ages 1-44, with blood loss comprising 60-70% of mortality in the absence of lethal CNS or cardiac injury. Immediate intervention is critical to improving chances of survival. While there are several products to control bleeding for external and compressible wounds, including pressure dressings, tourniquets, or topical materials (e.g., QuikClot, HemCon), there are no products that can be administered in the field for internal bleeding. There is a tremendous unmet need for a hemostatic agent to address internal bleeding in the field. We have developed hemostatic nanoparticles (GRGDS-NPs) that reduce bleeding times by ~50% in a rat femoral artery injury model. Here, we investigated their impact on survival following administration in a lethal liver resection injury in rats. Administration of these hemostatic nanoparticles reduced blood loss following the liver injury and dramatically and significantly increased 1 h survival from 40 and 47% in controls (inactive nanoparticles and saline, respectively) to 80%. Furthermore, we saw no complications following administration of these nanoparticles. We further characterized the nanoparticles' effect on clotting time (CT) and maximum clot firmness (MCF) using rotational thromboelastometry (ROTEM), a clinical measurement of whole-blood coagulation. Clotting time is significantly reduced, with no change in MCF. Administration of these hemostatic nanoparticles after massive trauma may help staunch bleeding and improve survival in the critical window following injury, and this could fundamentally change trauma care.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/terapia , Hemostáticos/uso terapêutico , Nanopartículas/uso terapêutico , Ferimentos não Penetrantes/terapia , Animais , Modelos Animais de Doenças , Artéria Femoral/lesões , Técnicas Hemostáticas , Hemostáticos/administração & dosagem , Fígado/lesões , Nanopartículas/administração & dosagem , Polietilenoglicóis/uso terapêutico , Poliglactina 910/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sobrevida , Ferimentos não Penetrantes/mortalidade
13.
J Vis Exp ; (189)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36440896

RESUMO

Cranial window surgery allows for the imaging of brain tissue in live mice with the use of multiphoton or other intravital imaging techniques. However, when performing any craniotomy by hand, there is often thermal damage to brain tissue, which is inherently variable surgery-to-surgery and may be dependent on individual surgeon technique. Implementing a surgical robot can standardize surgery and lead to a decrease in thermal damage associated with surgery. In this study, three methods of robotic drilling were tested to evaluate thermal damage: horizontal, point-by-point, and pulsed point-by-point. Horizontal drilling utilizes a continuous drilling schematic, while point-by-point drills several holes encompassing the cranial window. Pulsed point-by-point adds a "2 s on, 2 s off" drilling scheme to allow for cooling in between drilling. Fluorescent imaging of Evans Blue (EB) dye injected intravenously measures damage to brain tissue, while a thermocouple placed under the drilling site measures thermal damage. Thermocouple results indicate a significant decrease in temperature change in the pulsed point-by-point (6.90 °C ± 1.35 °C) group compared to the horizontal (16.66 °C ± 2.08 °C) and point-by-point (18.69 °C ± 1.75 °C) groups. Similarly, the pulsed point-by-point group also showed significantly less EB presence after cranial window drilling compared to the horizontal method, indicating less damage to blood vessels in the brain. Thus, a pulsed point-by-point drilling method appears to be the optimal scheme for reducing thermal damage. A robotic drill is a useful tool to help minimize training, variability, and reduce thermal damage. With the expanding use of multiphoton imaging across research labs, it is important to improve the rigor and reproducibility of results. The methods addressed here will help inform others of how to better use these surgical robots to further advance the field.


Assuntos
Robótica , Animais , Camundongos , Reprodutibilidade dos Testes , Craniotomia/efeitos adversos , Crânio/cirurgia , Microcirurgia
14.
J Vis Exp ; (184)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35758655

RESUMO

Intracortical microelectrodes hold great therapeutic potential. But they are challenged with significant performance reduction after modest implantation durations. A substantial contributor to the observed decline is the damage to the neural tissue proximal to the implant and subsequent neuroinflammatory response. Efforts to improve device longevity include chemical modifications or coating applications to the device surface to improve the tissue response. Development of such surface treatments is typically completed using non-functional "dummy" probes that lack the electrical components required for the intended application. Translation to functional devices requires additional consideration given the fragility of intracortical microelectrode arrays. Handling tools greatly facilitate surface treatments to assembled devices, particularly for modifications that require long procedural times. The handling tools described here are used for surface treatments applied via gas-phase deposition and aqueous solution exposure. Characterization of the coating is performed using ellipsometry and x-ray photoelectron spectroscopy. A comparison of electrical impedance spectroscopy recordings before and after the coating procedure on functional devices confirmed device integrity following modification. The described tools can be readily adapted for alternative electrode devices and treatment methods that maintain chemical compatibility.


Assuntos
Espectroscopia Dielétrica , Silício , Eletrodos Implantados , Microeletrodos , Silício/química
15.
Front Bioeng Biotechnol ; 10: 879187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721861

RESUMO

Orthopedic fractures have a significant impact on patients in the form of economic loss and functional impairment. Beyond the standard methods of reduction and fixation, one adjunct that has been explored since the late 1970s is electrical stimulation. Despite robust evidence for efficacy in the preclinical arena, human trials have mixed results, and this technology is not widely accepted. The purpose of this review is to examine the body of literature supporting electrical stimulation for the purpose of fracture healing in humans with an emphasis on device specifications and stimulation protocols and delineate a minimum reporting checklist for future studies of this type. We have isolated 12 studies that pertain to the administration of electrical stimulation for the purpose of augmenting fracture healing in humans. Of these, one was a direct current electrical stimulation study. Six studies utilized pulsed electromagnetic field therapy and five used capacitive coupling. When examining these studies, the device specifications were heterogenous and often incomplete in what they reported, which rendered studies unrepeatable. The stimulation protocols also varied greatly study to study. To demonstrate efficacy of electrical stimulation for fractures, the authors recommend isolating a fracture type that is prone to nonunion to maximize the electrical stimulation effect, a homogenous study population so as to not dilute the effect of electrical stimulation, and increasing scientific rigor in the form of pre-registration, blinding, and sham controls. Finally, we introduce the critical components of minimum device specification reporting for repeatability of studies of this type.

16.
Sci Rep ; 12(1): 10205, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715554

RESUMO

Understanding peripheral nerve micro-anatomy can assist in the development of safe and effective neuromodulation devices. However, current approaches for imaging nerve morphology at the fiber level are either cumbersome, require substantial instrumentation, have a limited volume of view, or are limited in resolution/contrast. We present alternative methods based on MUSE (Microscopy with Ultraviolet Surface Excitation) imaging to investigate peripheral nerve morphology, both in 2D and 3D. For 2D imaging, fixed samples are imaged on a conventional MUSE system either label free (via auto-fluorescence) or after staining with fluorescent dyes. This method provides a simple and rapid technique to visualize myelinated nerve fibers at specific locations along the length of the nerve and perform measurements of fiber morphology (e.g., axon diameter and g-ratio). For 3D imaging, a whole-mount staining and MUSE block-face imaging method is developed that can be used to characterize peripheral nerve micro-anatomy and improve the accuracy of computational models in neuromodulation. Images of rat sciatic and human cadaver tibial nerves are presented, illustrating the applicability of the method in different preclinical models.


Assuntos
Alprostadil , Nervos Periféricos , Animais , Axônios , Imageamento Tridimensional/métodos , Fibras Nervosas Mielinizadas , Nervos Periféricos/diagnóstico por imagem , Ratos , Nervo Isquiático/diagnóstico por imagem
17.
Front Bioeng Biotechnol ; 10: 793945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237571

RESUMO

Since the piezoelectric quality of bone was discovered in 1957, scientists have applied exogenous electrical stimulation for the purpose of healing. Despite the efforts made over the past 60 years, electronic bone growth stimulators are not in common clinical use. Reasons for this include high cost and lack of faith in the efficacy of bone growth stimulators on behalf of clinicians. The purpose of this narrative review is to examine the preclinical body of literature supporting electrical stimulation and its effect on bone properties and elucidate gaps in clinical translation with an emphasis on device specifications and mechanisms of action. When examining these studies, trends become apparent. In vitro and small animal studies are successful in inducing osteogenesis with all electrical stimulation modalities: direct current, pulsed electromagnetic field, and capacitive coupling. However, large animal studies are largely unsuccessful with the non-invasive modalities. This may be due to issues of scale and thickness of tissue planes with varying levels of resistivity, not present in small animal models. Additionally, it is difficult to draw conclusions from studies due to the varying units of stimulation strength and stimulation protocols and incomplete device specification reporting. To better understand the disconnect between the large and small animal model, the authors recommend increasing scientific rigor for these studies and reporting a novel minimum set of parameters depending on the stimulation modality.

18.
Sci Rep ; 12(1): 21798, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526728

RESUMO

Noninvasive electronic bone growth stimulators (EBGSs) have been in clinical use for decades. However, systematic reviews show inconsistent and limited clinical efficacy. Further, noninvasive EBGS studies in small animals, where the stimulation electrode is closer to the fracture site, have shown promising efficacy, which has not translated to large animals or humans. We propose that this is due to the weaker electric fields reaching the fracture site when scaling from small animals to large animals and humans. To address this gap, we measured the electric field strength reaching the bone during noninvasive EBGS therapy in human and sheep cadaver legs and in finite element method (FEM) models of human and sheep legs. During application of 1100 V/m with an external EBGS, only 21 V/m reached the fracture site in humans. Substantially weaker electric fields reached the fracture site during the later stages of healing and at increased bone depths. To augment the electric field strength reaching the fracture site during noninvasive EBGS therapy, we introduced the Injectrode, an injectable electrode that spans the distance between the bone and subcutaneous tissue. Our study lays the groundwork to improve the efficacy of noninvasive EBGSs by increasing the electric field strength reaching the fracture site.


Assuntos
Terapia por Estimulação Elétrica , Fraturas Ósseas , Humanos , Animais , Ovinos , Fraturas Ósseas/terapia , Osso e Ossos , Osteogênese , Modelos Animais
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5094-5098, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086486

RESUMO

Electrical stimulation after peripheral nerve injury (PNI) has the potential to promote more rapid and complete recovery of damaged fiber tracts. While permanently implanted devices are commonly used to treat chronic or persistent conditions, they are not ideal solutions for transient medical therapies due to high costs, increased risk of surgical injury, irritation, infection, and persistent inflammation at the site of the implant. Furthermore, removal of temporary leads placed on or around peripheral nerves may have unacceptable risk for nerve injury, which is counterproductive in developing therapies for PNI treatment. Transient devices which provide effective clinical stimulation while being capable of harmless bioabsorption may overcome key challenges in these areas. However, current bioabsorbable devices are limited in their robustness and require complex fabrication strategies and novel materials which may complicate their clinical translation pathway. In this study, we present a simple bioabsorbable / biodegradable electrode fabricated by modifying standard absorbable sutures, and we present data characterizing our prototype's stability in vitro and in vivo.


Assuntos
Implantes Absorvíveis , Traumatismos dos Nervos Periféricos , Eletrodos , Humanos , Nervos Periféricos/fisiologia , Suturas
20.
J Neural Eng ; 19(5)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36174538

RESUMO

Objective.Vagus nerve stimulation (VNS) is Food and Drug Administration-approved for epilepsy, depression, and obesity, and stroke rehabilitation; however, the morphological anatomy of the vagus nerve targeted by stimulatation is poorly understood. Here, we used microCT to quantify the fascicular structure and neuroanatomy of human cervical vagus nerves (cVNs).Approach.We collected eight mid-cVN specimens from five fixed cadavers (three left nerves, five right nerves). Analysis focused on the 'surgical window': 5 cm of length, centered around the VNS implant location. Tissue was stained with osmium tetroxide, embedded in paraffin, and imaged on a microCT scanner. We visualized and quantified the merging and splitting of fascicles, and report a morphometric analysis of fascicles: count, diameter, and area.Main results.In our sample of human cVNs, a fascicle split or merge event was observed every ∼560µm (17.8 ± 6.1 events cm-1). Mean morphological outcomes included: fascicle count (6.6 ± 2.8 fascicles; range 1-15), fascicle diameter (514 ± 142µm; range 147-1360µm), and total cross-sectional fascicular area (1.32 ± 0.41 mm2; range 0.58-2.27 mm).Significance.The high degree of fascicular splitting and merging, along with wide range in key fascicular morphological parameters across humans may help to explain the clinical heterogeneity in patient responses to VNS. These data will enable modeling and experimental efforts to determine the clinical effect size of such variation. These data will also enable efforts to design improved VNS electrodes.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Humanos , Estudos Transversais , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos , Cadáver
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA